欢迎来到天天文库
浏览记录
ID:40713785
大小:3.45 MB
页数:10页
时间:2019-08-06
《cvpr18-Two-Stream Convolutional Networks for Dynamic Texture Synthesis》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、Two-StreamConvolutionalNetworksforDynamicTextureSynthesisMatthewTesfaldetMarcusA.BrubakerKonstantinosG.DerpanisDepartmentofElectricalEngineeringandComputerScienceDepartmentofComputerScienceYorkUniversity,TorontoRyersonUniversity,Toronto{mtesfald,mab}@eecs.yorku.cakosta@scs.ryerson.caAbstractDynam
2、icTextureSynthesisDynamicsStyleTransferappearancetargetWeintroduceatwo-streammodelfordynamictextureappearance&dynamicstargetoutputsynthesis.Ourmodelisbasedonpre-trainedconvolutionaloutputnetworks(ConvNets)thattargettwoindependenttasks:(i)objectrecognition,and(ii)opticalflowprediction.Givenaninputd
3、ynamictexture,statisticsoffilterresponsesfromtheobjectrecognitionConvNetencapsulatetheper-frameappearanceoftheinputtexture,whilestatisticsoffilterre-sponsesfromtheopticalflowConvNetmodelitsdynamics.Togenerateanoveltexture,arandomlyinitializedinputse-dynamicstargetquenceisoptimizedtomatchthefeaturest
4、atisticsfromeachFigure1:Dynamictexturesynthesis.(left)Givenaninputstreamofanexampletexture.Inspiredbyrecentworkondynamictextureasthetarget,ourtwo-streammodelisableimagestyletransferandenabledbythetwo-streammodel,tosynthesizeanoveldynamictexturethatpreservesthetar-wealsoapplythesynthesisapproachto
5、combinethetextureget’sappearanceanddynamicscharacteristics.(right)Ourappearancefromonetexturewiththedynamicsofanothertwo-streamapproachenablessynthesisthatcombinesthetogenerateentirelynoveldynamictextures.Weshowthattextureappearancefromonetargetwiththedynamicsfromourapproachgeneratesnovel,highqua
6、litysamplesthatanother,resultinginacompositionofthetwo.matchboththeframewiseappearanceandtemporalevo-lutionofinputtexture.Finally,wequantitativelyevaluateexampletextureinputs,generatesanoveldynamictextureourtexturesynthesisapproachwithathoroughuserstudy.instance.Italsoenablesanovelformofstyletran
7、sferwherethetargetappearanceanddynamicscanbetakenfromdif-ferentsourcesasshowninFig.1.1.IntroductionOurmodelisconstructedfromtwoconvolutionalnet-works(ConvNets),anappearancestreamandadynamicsManycommontemporalvisualpatt
此文档下载收益归作者所有