[IJCNN 2012] Steel Defect Classification with Max-Pooling Convolutional Neural Networks

[IJCNN 2012] Steel Defect Classification with Max-Pooling Convolutional Neural Networks

ID:40702394

大小:1.04 MB

页数:6页

时间:2019-08-06

[IJCNN 2012] Steel Defect Classification with Max-Pooling Convolutional Neural Networks_第1页
[IJCNN 2012] Steel Defect Classification with Max-Pooling Convolutional Neural Networks_第2页
[IJCNN 2012] Steel Defect Classification with Max-Pooling Convolutional Neural Networks_第3页
[IJCNN 2012] Steel Defect Classification with Max-Pooling Convolutional Neural Networks_第4页
[IJCNN 2012] Steel Defect Classification with Max-Pooling Convolutional Neural Networks_第5页
资源描述:

《[IJCNN 2012] Steel Defect Classification with Max-Pooling Convolutional Neural Networks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、SteelDefectClassificationwithMax-PoolingConvolutionalNeuralNetworksJonathanMasci,UeliMeier,DanCiresan,GabrielFricoutJurgenSchmidhuber¨ArcelorMittalIDSIA,USIandSUPSIMaizieresResearchSA,`Galleria2,6928Manno-Lugano,FranceSwitzerlandfgabriel.fricout@arcelormittal.comgfjona

2、than,ueli,dan,juergeng@idsia.chAbstract—WepresentaMax-PoolingConvolutionalNeuralsification.Thesystemisusuallybasedonasetofhand-Networkapproachforsupervisedsteeldefectclassification.Onawiredpipelineswithpartialornoself-adjustableparametersclassificationtaskwith7defects,co

3、llectedfromarealproductionwhichmakesthefine-tuningprocessofthisindustrialsystemsline,anerrorrateof7%isobtained.ComparedtoSVMcumbersome,requiringmuchmorehumaninterventionthanclassifierstrainedoncommonlyusedfeaturedescriptorsourbestnetperformsatleasttwotimesbetter.Notonly

4、wedoobtaindesired.Inthisworkwefocusonthetwolastpipelinestagesmuchbetterresults,buttheproposedmethodalsoworksdirectlyandproposeanapproachbasedonMax-PoolingConvolutionalonrawpixelintensitiesofdetectedandsegmentedsteeldefects,NeuralNetworks(MPCNN)[1],[2],[3],[4],[5],that

5、learnavoidingfurthertimeconsumingandhardtooptimizead-hocthefeaturesdirectlyfromlabeledimagesusingsupervisedpreprocessing.learning.Weshowthattheproposedmethodachievesstate-of-the-artresultsonrealworlddataandcompareourapproachI.INTRODUCTIONtoclassifierstrainedonclassicfe

6、aturedescriptors.MachinevisionbasedsurfaceinspectiontechnologieshaveThereisnotmuchliteratureaboutsteeldefectdetectiongainedalotofinterestfromvariousindustriestoautomatein-[6].However,inabroadercontexttheproblemcanbespectionsystems,andtosignificantlyimproveoverallproduc

7、tviewedasdefectdetectionintexturedmaterialwhichhasquality.Atypicalindustryadoptingtheserefinedinspectionreceivedconsiderableattentionincomputervision[7],[8],toolsistherolledsteelstripmarket.Real-timevisualinspec-[9].Inclassicalapproaches,featureextractionisperformedtio

8、nofproductionlinesiscrucialtoprovideaproductwithusingthefilter-bankparadigm,resultinginanarchitectureeverfewersurfacedefects.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。