[IJCAI 2011 Ciresan] Flexible, high performance convolutional neural networks for image classification

[IJCAI 2011 Ciresan] Flexible, high performance convolutional neural networks for image classification

ID:40702388

大小:703.36 KB

页数:6页

时间:2019-08-06

[IJCAI 2011 Ciresan] Flexible, high performance convolutional neural networks for image classification_第1页
[IJCAI 2011 Ciresan] Flexible, high performance convolutional neural networks for image classification_第2页
[IJCAI 2011 Ciresan] Flexible, high performance convolutional neural networks for image classification_第3页
[IJCAI 2011 Ciresan] Flexible, high performance convolutional neural networks for image classification_第4页
[IJCAI 2011 Ciresan] Flexible, high performance convolutional neural networks for image classification_第5页
资源描述:

《[IJCAI 2011 Ciresan] Flexible, high performance convolutional neural networks for image classification》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ProceedingsoftheTwenty-SecondInternationalJointConferenceonArtificialIntelligenceFlexible,HighPerformanceConvolutionalNeuralNetworksforImageClassificationDanC.Cires¸an,UeliMeier,JonathanMasci,LucaM.Gambardella,JurgenSchmidhuber¨IDSIA,USIandSUPSIGalleria2,6928Manno-Lu

2、gano,Switzerland{dan,ueli,jonathan,luca,juergen}@idsia.chAbstract(CNNs)[LeCunetal.,1998;Behnke,2003;Simardetal.,2003],whoseweights(filters)arerandomlyinitializedandWepresentafast,fullyparameterizableGPUim-changedinasupervisedwayusingback-propagation(BP).plementationo

3、fConvolutionalNeuralNetworkDespitethehardwareprogressofthepastdecades,compu-variants.Ourfeatureextractorsareneithercare-tationalspeedisstillalimitingfactorforCNNarchitecturesfullydesignednorpre-wired,butratherlearnedincharacterizedbymanybuildingblockstypicallysetbyt

4、rialasupervisedway.Ourdeephierarchicalarchitec-anderror.Tosystematicallytesttheimpactofvariousarchi-turesachievethebestpublishedresultsonbench-tecturesonclassificationperformance,wepresentafastCNNmarksforobjectclassification(NORB,CIFAR10)implementationonGraphicsProces

5、singUnits(GPUs).Previ-andhandwrittendigitrecognition(MNIST),withousGPUimplementationsofCNNs[Chellapillaetal.,2006;errorratesof2.53%,19.51%,0.35%,respectively.UetzandBehnke,2009;Strigletal.,2010]werehard-codedDeepnetstrainedbysimpleback-propagationper-tosatisfyGPUhar

6、dwareconstraintsorusegeneralpurposeformbetterthanmoreshallowones.Learningislibraries,whereasourimplementationisflexibleandfullyon-surprisinglyrapid.NORBiscompletelytrainedline(i.e.,weightupdatesaftereachimage).Anotableexcep-withinfiveepochs.TesterrorratesonMNISTtionis

7、[Jarrettetal.,2009]whoperformedathoroughanaly-dropto2.42%,0.97%and0.48%after1,3and17sisoftheinfluenceofallbuildingblocksofamultistagear-epochs,respectively.chitectureonrecognitionperformance.OurimplementationallowsfortraininglargeCNNswithindaysinsteadofmonths,1Introd

8、uctionsuchthatwecaninvestigatetheinfluenceofvariousstructuralThehumanvisualsystemefficientlyrecognizesandlocal-parametersbyexploringlargepar

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。