[CVPR 2011] Unsupervised Auxiliary Visual Words Discovery for Large-Scale Image Object Retrieval

[CVPR 2011] Unsupervised Auxiliary Visual Words Discovery for Large-Scale Image Object Retrieval

ID:40702238

大小:4.31 MB

页数:8页

时间:2019-08-06

[CVPR 2011] Unsupervised Auxiliary Visual Words Discovery for Large-Scale Image Object Retrieval_第1页
[CVPR 2011] Unsupervised Auxiliary Visual Words Discovery for Large-Scale Image Object Retrieval_第2页
[CVPR 2011] Unsupervised Auxiliary Visual Words Discovery for Large-Scale Image Object Retrieval_第3页
[CVPR 2011] Unsupervised Auxiliary Visual Words Discovery for Large-Scale Image Object Retrieval_第4页
[CVPR 2011] Unsupervised Auxiliary Visual Words Discovery for Large-Scale Image Object Retrieval_第5页
资源描述:

《[CVPR 2011] Unsupervised Auxiliary Visual Words Discovery for Large-Scale Image Object Retrieval》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、UnsupervisedAuxiliaryVisualWordsDiscoveryforLarge-ScaleImageObjectRetrievalYin-HsiKuo1;2,Hsuan-TienLin1,Wen-HuangCheng2,Yi-HsuanYang1,andWinstonH.Hsu11NationalTaiwanUniversityand2AcademiaSinica,Taipei,TaiwanAbstract &'(    

2、 Imageobjectretrievallocatingimageoccurrencesofspecificobjectsinlarge-scaleimagecollectionsisessen- !&tialformanipulatingthesheeramountofphotos.Cur-

3、           rentsolutions,mostlybasedonbags-of-wordsmodel,suf-ferfromlowrecallrateanddonotresistnoisescausedbythechangesinlighting,viewpoints,andevenocclusions.!

4、"#$"Weproposetoaugmenteachimagewithauxiliaryvisualwords(AVWs),semanticallyrelevanttothesearchtargets.TheAVWsareautomaticallydiscoveredbyfeaturepropa-gationandselectionintextualandvisualimagegraphsin##""

5、#%#%$!!#%anunsupervisedmanner.Weinvestigatevariantoptimiza-Figure1.Comparisonintheretrievalperformanceofthetradi-tionmethodsforeffectivenessandscalabilityinlarge-scaletionalBoWmodel[14]andtheproposedapproa

6、ch.(a)Anexam-imagecollections.Experimentinginthelarge-scalecon-pleofobject-levelqueryimage.(b)TheretrievalresultsofaBoWsumerphotos,wefoundthatthetheproposedmethodsig-model,whichgenerallysuffersfromthelowrecallrate.(c)Theresultsoftheproposedsystem,whichobta

7、insmoreaccurateandnificantlyimprovesthetraditionalbag-of-words(111%rel-diverseresults.Notethatthenumberbeloweachimageisitsrankatively).Meanwhile,theselectionprocesscanalsonotablyintheretrievalresultsandthenumberinaparenthesisrepresentsreducethenumberoffeatu

8、res(to1.4%)andcanfurtherfa-therankpredictedbytheBoWmodel.cilitateindexinginlarge-scaleimageobjectretrieval.DuetovariantcaptureconditionsandlargeVWvocabu-1.Introductionlary(e.g.,1millionvocabulary),thefeatures

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。