欢迎来到天天文库
浏览记录
ID:40702238
大小:4.31 MB
页数:8页
时间:2019-08-06
《[CVPR 2011] Unsupervised Auxiliary Visual Words Discovery for Large-Scale Image Object Retrieval》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、UnsupervisedAuxiliaryVisualWordsDiscoveryforLarge-ScaleImageObjectRetrievalYin-HsiKuo1;2,Hsuan-TienLin1,Wen-HuangCheng2,Yi-HsuanYang1,andWinstonH.Hsu11NationalTaiwanUniversityand2AcademiaSinica,Taipei,TaiwanAbstract&'(
2、 Imageobjectretrievallocatingimageoccurrencesofspecificobjectsinlarge-scaleimagecollectionsisessen- !&tialformanipulatingthesheeramountofphotos.Cur-
3、 rentsolutions,mostlybasedonbags-of-wordsmodel,suf-ferfromlowrecallrateanddonotresistnoisescausedbythechangesinlighting,viewpoints,andevenocclusions.!
4、"#$"Weproposetoaugmenteachimagewithauxiliaryvisualwords(AVWs),semanticallyrelevanttothesearchtargets.TheAVWsareautomaticallydiscoveredbyfeaturepropa-gationandselectionintextualandvisualimagegraphsin##""
5、#%#%$!!#%anunsupervisedmanner.Weinvestigatevariantoptimiza-Figure1.Comparisonintheretrievalperformanceofthetradi-tionmethodsforeffectivenessandscalabilityinlarge-scaletionalBoWmodel[14]andtheproposedapproa
6、ch.(a)Anexam-imagecollections.Experimentinginthelarge-scalecon-pleofobject-levelqueryimage.(b)TheretrievalresultsofaBoWsumerphotos,wefoundthatthetheproposedmethodsig-model,whichgenerallysuffersfromthelowrecallrate.(c)Theresultsoftheproposedsystem,whichobta
7、insmoreaccurateandnificantlyimprovesthetraditionalbag-of-words(111%rel-diverseresults.Notethatthenumberbeloweachimageisitsrankatively).Meanwhile,theselectionprocesscanalsonotablyintheretrievalresultsandthenumberinaparenthesisrepresentsreducethenumberoffeatu
8、res(to1.4%)andcanfurtherfa-therankpredictedbytheBoWmodel.cilitateindexinginlarge-scaleimageobjectretrieval.DuetovariantcaptureconditionsandlargeVWvocabu-1.Introductionlary(e.g.,1millionvocabulary),thefeatures
此文档下载收益归作者所有