@[CVPR 2012] Weak Attributes for Large-Scale Image Retrieval

@[CVPR 2012] Weak Attributes for Large-Scale Image Retrieval

ID:40702068

大小:1.57 MB

页数:8页

时间:2019-08-06

@[CVPR 2012] Weak Attributes for Large-Scale Image Retrieval_第1页
@[CVPR 2012] Weak Attributes for Large-Scale Image Retrieval_第2页
@[CVPR 2012] Weak Attributes for Large-Scale Image Retrieval_第3页
@[CVPR 2012] Weak Attributes for Large-Scale Image Retrieval_第4页
@[CVPR 2012] Weak Attributes for Large-Scale Image Retrieval_第5页
资源描述:

《@[CVPR 2012] Weak Attributes for Large-Scale Image Retrieval》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、WeakAttributesforLarge-ScaleImageRetrieval∗FelixX.Yuy,RongrongJiy,Ming-HenTsaix,GuangnanYey,Shih-FuChangyColumbiaUniversity,NewYork,NY10027y{yuxinnan,rrji,yegn,sfchang}@ee.columbia.eduxminghen@cs.columbia.eduAbstracttrieveimagesofabird,onecoulddescribethephysicaltraitsoffeather,beak,andbodyetc.Th

2、etaskistoretrieveim-Attribute-basedqueryoffersanintuitivewayofimageagescontainingallofthequeryattributes.Weassumeonlyretrieval,inwhichuserscandescribetheintendedsearchasmallportionofthedatabasehavethequeryattributesla-targetswithunderstandableattributes.Inthispaper,wede-beledbeforehand,andyetourg

3、oalistosearchtheentirevelopageneralandpowerfulframeworktosolvethisprob-large-scaleimagecorpus.lembyleveragingalargepoolofweakattributescomprisedAstraightforwardsolutionfortheaboveproblemistoofautomaticclassifierscoresorothermid-levelrepresenta-buildclassifiersforthequeryattributesofinterest,andtion

4、sthatcanbeeasilyacquiredwithlittleornohumansumtheindependentclassifierscorestoanswersuchmulti-labor.Weextendtheexistingretrievalmodelofmodelingattributequeries[12].Apromisingalternative,asshownindependencywithinqueryattributestomodelingdependency[23],istoanalyzethedependenciesamongqueryattributeso

5、fqueryattributesonalargepoolofweakattributes,whichandleveragesuchmulti-attributeinterdependencetomiti-ismoreexpressiveandscalable.Toefficientlylearnsuchagatethenoisesexpectedfromtheimperfectautomaticclas-largedependencymodelwithoutoverfitting,wefurtherpro-sifiersandtherebyachieverobustqueryperforman

6、ce.Anil-poseasemi-supervisedgraphicalmodeltomapeachmulti-lustrativeexampleoftheabovedependencymodelisshownattributequerytoasubsetofweakattributes.ThroughinFigure1.extensiveexperimentsoverseveralattributebenchmarks,However,[23]reliedonlyonthepre-labeledqueryat-wedemonstrateconsistentandsignificantp

7、erformanceim-tributestodesignthedependencymodel,limitingitsper-provementsoverthestate-of-the-arttechniques.Inaddi-formanceandscalability.Ononehand,userlabelingistion,wecompilethelargestmulti-attributeimageretrievalabur

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。