[CVPR 2013] Unsupervised Salience Learning for Person Re-identification

[CVPR 2013] Unsupervised Salience Learning for Person Re-identification

ID:40376601

大小:761.44 KB

页数:8页

时间:2019-08-01

[CVPR 2013] Unsupervised Salience Learning for Person Re-identification_第1页
[CVPR 2013] Unsupervised Salience Learning for Person Re-identification_第2页
[CVPR 2013] Unsupervised Salience Learning for Person Re-identification_第3页
[CVPR 2013] Unsupervised Salience Learning for Person Re-identification_第4页
[CVPR 2013] Unsupervised Salience Learning for Person Re-identification_第5页
资源描述:

《[CVPR 2013] Unsupervised Salience Learning for Person Re-identification》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、UnsupervisedSalienceLearningforPersonRe-identificationRuiZhaoWanliOuyangXiaogangWangDepartmentofElectronicEngineering,TheChineseUniversityofHongKong{rzhao,wlouyang,xgwang}@ee.cuhk.edu.hkAbstractHumaneyescanrecognizepersonidentitiesbasedonsomesmallsalientregions

2、.However,suchvaluablesalientinformationisoftenhiddenwhencomputingsimilaritiesofimageswithexistingapproaches.Moreover,manyexist-ingapproacheslearndiscriminativefeaturesandhandledrasticviewpointchangeinasupervisedwayandrequirelabelingnewtrainingdataforadifferent

3、pairofcameraviews.Inthispaper,weproposeanovelperspectiveforper-sonre-identificationbasedonunsupervisedsaliencelearn-ing.Distinctivefeaturesareextractedwithoutrequiringidentitylabelsinthetrainingprocedure.First,weapplyadjacencyconstrainedpatchmatchingtobuilddens

4、ecor-respondencebetweenimagepairs,whichshowseffective-nessinhandlingmisalignmentcausedbylargeviewpointandposevariations.Second,welearnhumansalienceinanunsupervisedmanner.Toimprovetheperformanceofpersonre-identification,humansalienceisincorporatedin(a1)(a2)(a3)(

5、(a4)(a5)b5)(b4)(b3)((b2)b1)patchmatchingtofindreliableanddiscriminativematchedpatches.TheeffectivenessofourapproachisvalidatedonFigure1.ExamplesofhumanimagematchingandsaliencethewidelyusedVIPeRdatasetandETHZdataset.maps.Imagesontheleftoftheverticaldashedblackli

6、nearefromcameraviewAandthoseontherightarefromcameraviewB.Upperpartofthefigureshowsanexampleofmatchingbasedondensecorrespondenceandweightingwithsaliencevalues,andthe1.Introductionlowerpartshowssomepairsofimageswiththeirsaliencemaps.Personre-identificationhandlesp

7、edestrianmatchingandrankingacrossnon-overlappingcameraviews.Ithasmanyimportantapplicationsinvideosurveillancebysavingalotbyemployingsupervisedmodels,whichrequiretrainingofhumaneffortsonexhaustivelysearchingforapersondatawithidentitylabels.Also,mostofthemrequir

8、elabel-fromlargeamountsofvideosequences.However,thisisingnewtrainingdatawhencamerasettingschange,sincealsoaverychallengingtask.Asurveillancecameramaythecross-viewtransformsarediffe

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。