高考概率统计考点解析与试题集粹

高考概率统计考点解析与试题集粹

ID:40677704

大小:462.50 KB

页数:10页

时间:2019-08-06

高考概率统计考点解析与试题集粹_第1页
高考概率统计考点解析与试题集粹_第2页
高考概率统计考点解析与试题集粹_第3页
高考概率统计考点解析与试题集粹_第4页
高考概率统计考点解析与试题集粹_第5页
资源描述:

《高考概率统计考点解析与试题集粹》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、高考概率与统计考点解析概率与统计试题是高考的必考内容。它是以实际应用问题为载体,以排列组合和概率统计等知识为工具,以考查对五个概率事件的判断识别及其概率的计算和随机变量概率分布列性质及其应用为目标的中档师,预计这也是今后高考概率统计试题的考查特点和命题趋向。下面对其常见量刑和考点进行解析。考点1考查等可能事件概率计算在一次实验中可能出现的结果有n个,而且所有结果出现的可能性都相等。如果事件A包含的结果有m个,那么P(A)=。这就是等可能事件的判断方法及其概率的计算公式。高考常借助不同背景的材料考查等可能事件概率的计算方法以及分析和解决实际问题的能力。例1(20

2、04天津)从4名男生和2名女生中任选3人参加演讲比赛.(I)求所选3人都是男生的概率;(II)求所选3人中恰有1名女生的概率;(III)求所选3人中至少有1名女生的概率.本小题考查等可能事件的概率计算及分析和解决实际问题的能力.满分12分.(I)解:所选3人都是男生的概率为(II)解:所选3人中恰有1名女生的概率为(III)解:所选3人中至少有1名女生的概率为考点2考查互斥事件至少有一个发生与相互独立事件同时发生概率计算不可能同时发生的两个事件A、B叫做互斥事件,它们至少有一个发生的事件为A+B,用概率的加法公式计算。事件A(或B)是否发生对事件B(或A)发生

3、的概率没有影响,则A、B叫做相互独立事件,它们同时发生的事件为。用概率的法公式计算。高考常结合考试竞赛、上网工作等问题对这两个事件的识别及其概率的综合计算能力进行考查。例2.(2005全国卷Ⅲ)设甲、乙、丙三台机器是否需要照顾相互之间没有影响。已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125,(Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少;10(Ⅱ)计算这个小时内至少有一台需要照顾的概率.解:(Ⅰ)记甲、乙、丙三台机器在一小时需要照顾分别为事件A、B、C,……1分则A、B、C

4、相互独立,由题意得:P(AB)=P(A)P(B)=0.05P(AC)=P(A)P(C)=0.1P(BC)=P(B)P(C)=0.125…………………………………………………………4分解得:P(A)=0.2;P(B)=0.25;P(C)=0.5所以,甲、乙、丙每台机器在这个小时内需要照顾的概率分别是0.2、0.25、0.5……6分(Ⅱ)∵A、B、C相互独立,∴相互独立,……………………………………7分∴甲、乙、丙每台机器在这个小时内需都不需要照顾的概率为……………………………10分∴这个小时内至少有一台需要照顾的概率为……12分考点3考查对立事件概率计算必有一个

5、发生的两个互斥事件A、B叫做互为对立事件。即或。用概率的减法公式计算其概率。高考常结合射击、电路、交通等问题对对立事件的判断识别及其概率计算进行考查。例3.(2005福建卷文)甲、乙两人在罚球线投球命中的概率分别为.(Ⅰ)甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;(Ⅱ)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率.解:(Ⅰ)依题意,记“甲投一次命中”为事件A,“乙投一次命中”为事件B,则∵“甲、乙两人各投球一次,恰好命中一次”的事件为答:甲、乙两人在罚球线各投球一次,恰好命中一次的概率为(Ⅱ)∵事件“甲、乙两人在罚球线各投球二次均不

6、命中”的概率为∴甲、乙两人在罚球线各投球两次至少有一次命中的概率10答:甲、乙两人在罚球线各投球二次,至少有一次命中的概率为考点4考查独立重复试验概率计算若在次重复试验中,每次试验结果的概率都不依赖其它各次试验的结果,则此试验叫做次独立重复试验。若在1次试验中事件A发生的概率为P,则在次独立惩处试验中,事件A恰好发生次的概率为。高考结合实际应用问题考查次独立重复试验中某事件恰好发生次的概率的计算方法和化归转化、分类讨论等数学思想方法的应用。例4.(2005湖北卷)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,

7、该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字).解:(I)在第一次更换灯泡工作中,不需要换灯泡的概率为需要更换2只灯泡的概率为(II)对该盏灯来说,在第1、2次都更换了灯泡的概率为(1-p1)2;在第一次未更换

8、灯泡而在第二次需要更换灯泡的概率为p1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。