欢迎来到天天文库
浏览记录
ID:40669131
大小:325.00 KB
页数:8页
时间:2019-08-05
《3.1函数与方程》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、3.1函数与方程[教学目标]1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系.2.根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解得常用方法.3.在用“二分法”求方程近似解的过程中,使学生进一步体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识.[教学要求]教科书注重从学生已有的基础(一元二次方程及其根的求法,一元二次函数及其图象与性质)出发,从具体(一元二次方程的根与对应的一元二次函数的图象与轴的交点的横坐标之间的关系)到一般,揭示方程的根与对应函数的零点之间的关系.在此基础上,再介
2、绍求函数零点的近似值的“二分法”,并在总结“用二分法求函数零点的步骤”中渗透算法思想,为学生后续学习算法内容埋下伏笔.教科书不仅希望学生在数学知识上有所收获,而且希望学生感受到数学文化方面的熏陶,所以在“阅读与思考”中介绍中外数学家在方程求解中所取得的成就,特别是我国古代数学家对数学发展与人类文明的贡献,这一内容可以在教学过程中适当进行处理.由于方程的近似解一般都涉及较复杂的计算,在利用“二分法”求方程近似解的过程中,由于数值计算较为复杂,因此对获得给定精确度的近似解增加了困难,要解决这一困难,需要恰当地使用信息技术工具.建议在教学中要适时地使用计算器或者计算机,注意体现技术使用的必要
3、性.多数函数应用问题也涉及较复杂的数据,因此,建议较多地运用信息技术工具,课本专门安排了两个“信息技术应用”,教师可适当地指导学生进行学习.教学中要加强知识间的联系,具体体现在结合函数的图象,判断方程根的存在性及根的个数,从而了解函数的零点与方程根的关系,提高学生对函数的广泛应用,以及函数与其他数学内容有机联系的认识.课本在3.1.1方程的根与函数的零点中,选取探究具体的一元二次方程的根与其对应的一元二次函数的图象与轴的交点的横坐标之间的关系,作为本节内容的入口,其意图是让学生从熟悉的环境中发现新知识,使新知识与原有知识形成联系.实施教学时,应该给学生提供探究情境,让学生自己发现并归纳
4、出结论“一元二次方程的根就是相应的二次函数的图象与轴的交点的横坐标”.给出函数零点的概念后,要让学生明确“方程的根”与“函数的零点”尽管有密切的联系,但不能将它们混为一谈.之所以介绍通过求函数的零点求方程的根,是因为函数的图象和性质,为理解函数的零点提供了直观的认识,并为判定零点是否存在和求出零点提供了支持,这就使方程的求解与函数的变化形成联系,有利于分析问题的本质.通过研究一元二次方程的根及相应的函数图象与轴交点的横坐标的关系,导出函数的零点的概念;以具体函数在某闭区间上存在零点的特点,探究在某区间上图象连续的函数存在零点的判定方法;以求具体方程的近似解介绍二分法并总结其实施步骤等,
5、都体现了从具体到一般的认识过程.教学时,要注意让学生通过具体实例的探究,归纳概括所发现的结论或规律,并用准确的数学语言表达出来.这里要特别注意引导学生从联系的观点理解有关内容,沟通函数、方程、不等式以及算法等内容,使学生体会知识之间的联系.例如,结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根之间的关系;根据具体函数的图象,能借助计算器用二分法求相应方程的近似解,为算法的学习作准备,另外,还要特别注意信息技术的使用.课本通过第87页的“探究”,让学生观察对应的二次函数在区间端点上的函数值之积的特点,引导学生发现连续函数在某区间上存在零点的判定方法.教
6、学时,可让学生多举一些例子加以认识,如用计算器或计算机多画一些函数(不一定是二次函数)的图象进行观察与概括.教科书上给出的下述结论,只要求学生理解并会应用,而不需给出证明.如果函数在区间上的图象是连续不断的一条曲线,并且有,那么,函数在区间内有零点,即存在,使得,这个也就是方程的根.[教学重点]用“二分法”求方程的近似解.[教学难点]如何处理复杂的数值计算;如何恰当使用计算器.[教学时数]3课时[教学过程]第一课时3.1.1方程的根与函数的零点(1)新课导入讨论:一元二次方程的根与二次函数数的图象有什么关系?先观察几个具体的一元二次方程及其相应的二次函数,分别选取方程有两个不同的根、重
7、根和无实数根三种类型.方程与函数;方程与函数;方程与函数;再请同学们解方程,并分别画出三个函数的草图.通过讨论得出:(课本第87页)一元二次方程有两不同根就是相应的二次函数的图象与轴有两个不同交点,且其横坐标就是根;一元二次方程有两个重根就是相应的二次函数的图象与轴一个交点,且其横坐标就是根;一元二次方程无实数根就是相应的二次函数的图象与轴没有交点;总之,一元二次方程的根就是相应的二次函数的图象与轴的交点的横坐标.点明本节课题:方程的根与函数的
此文档下载收益归作者所有