欢迎来到天天文库
浏览记录
ID:40621456
大小:644.80 KB
页数:26页
时间:2019-08-05
《初二数学第八讲全等三角形的性质及判定(二)(教案)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、个性化教案第08讲全等三角形的性质及判定(二)适用学科初中数学适用年级初中二年级适用区域全国-人教版课时时长(分钟)120分钟知识点1.全等三角形的应用2.全等三角形的判定与性质教学目标1.深刻理解“全等”的含义;2.熟悉组成全等三角形的基本图形,并能在复杂的图形中发现分解出这些基本图形;3.恰当选择判定三角形全等的方法;4.掌握证明三角形全等的几个要领。教学重点熟悉全等三角形证明中的中点问题、旋转及截长补短的运用教学难点证明全等三角形的中点问题、旋转及截长补短的识别教学过程一、复习预习1805年,法
2、军在拿破仑的率领下与德军在莱茵河畔激战.德军在莱茵河北岸Q处,如图所示,因不知河宽,法军大炮很难瞄准敌营.聪明的拿破仑站在南岸的点O处,调整好自己的帽子,使视线恰好擦着帽舌边缘看到对面德国军营Q处,然后他一步一步后退,一直退到自己的视线恰好落在他刚刚站立的点O处,让士兵丈量他所站立位置B与O点的距离,并下令按照这个距离炮轰德军.试问:法军能命中目标吗?如果可以,聪明的你能告诉我为什么吗?用帽舌边缘视线法还可以怎样测量,也能测出河岸两边的距离吗?【答案】解:法军能命中目标.理由:易知AB=PO,∠A=∠
3、P,又∵AB⊥BO,PO⊥BQ,26个性化教案∴∠ABO=∠POQ=90°,∵在△ABO和△POQ中,,∴△ABO≌△POQ(ASA),∴BO=OQ,因此,按照BO的距离炮轰德军时,炮弹恰好落入德军Q处;如果拿破仑站在O处,只需转过身来仍可用帽舌边缘视线法测出河岸两边的距离.【解析】根据拿破仑的身高不变可得AB=PO,视线方向不变可得∠A=∠P,然后利用“角边角”证明△ABO和△POQ全等,根据全等三角形对应边相等可得BO=OQ,从而得到能够使炮弹落入德军Q处;同理,转过身来仍然可以测量.二、知识讲解
4、三角形全等是证明线段相等,角相等的最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.应用三角形全等的判别方法注意以下几点:1.条件充足时直接应用判定定理在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等.这种情况证明两个三角形全等的条件比较充分,只要认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.2.条件不足,会增加条件用判定定理此类问题实际是指条件开放题
5、,即指题中没有确定的已知条件或已知条件不充分,需要补充三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,即从求证入手,逐步分析,探索结论成立的条件,从而得出答案.3.条件比较隐蔽时,可通过添加辅助线用判定定理证明两个三角形全等时,若边或角的关系不明显,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.常见的隐藏条件有:①公共边,公共角,对顶角;②线段的相加减;③角度的互余,互补,三角形的外角等于与它不相邻的内角和。26个性化教案
6、4.条件中没有现成的全等三角形时,会通过构造全等三角形用判别方法不能直接证明一对三角形全等时,一般需要作辅助线来构造全等三角形.考点/易错点1常见的几种辅助线添加:①遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形利用的思维模式是全等变换中的“旋转”;②遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理;③过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“
7、翻转折叠”;④截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分之类的题目.三、例题精析【例题1】【题干】如图,CB,CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB.求证:CE=2CD.【答案】证明:如图,延长CD至点F,使DF=CD,连接BF.在△ADC和△BDF中,,∴△ADC≌△BDF(SAS),∴AC=BF,∠1=∠A.26个性化教案由AC=AB得∠AC
8、B=∠2.∵∠3=∠A+∠ACB,∴∠3=∠CBF.再由AC=AB=BF=BE及BC=BC,在△CBE和△CBF中,,∴△CBE≌△CBF,∴CE=CF,即CE=2CD【解析】在三角形全等的证明中,我们常会遇到证明某条线段的长度等于另一条线段长度的两倍或者二分之一等,还会遇到两条线段和与另一条线段的不等关系。如果题目中有中点这个已知条件,运用倍长中线法,可达到事半功倍的效果。【变式1】在△ABC中,AD为BC边上的中线.求证:AB+AC>2AD.【答案】
此文档下载收益归作者所有