相似三角形中几种常见的辅助线作法(有辅助线)

相似三角形中几种常见的辅助线作法(有辅助线)

ID:40606720

大小:635.40 KB

页数:5页

时间:2019-08-04

相似三角形中几种常见的辅助线作法(有辅助线)_第1页
相似三角形中几种常见的辅助线作法(有辅助线)_第2页
相似三角形中几种常见的辅助线作法(有辅助线)_第3页
相似三角形中几种常见的辅助线作法(有辅助线)_第4页
相似三角形中几种常见的辅助线作法(有辅助线)_第5页
资源描述:

《相似三角形中几种常见的辅助线作法(有辅助线)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、相似三角形中几种常见的辅助线作法在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。主要的辅助线有以下几种:一、添加平行线构造“A”“X”型例1:如图,D是△ABC的BC边上的点,BD:DC=2:1,E是AD的中点,求:BE:EF的值.解法一:过点D作CA的平行线交BF于点P,则∴PE=EFBP=2PF=4EF所以BE=5EF∴BE:EF=5:1.解法二:过点D作BF的平行线交AC于点Q,∴BE:EF=5:1.解法三:过点E作BC的平行线交AC于点S,解法四:过点E作AC的平行线交

2、BC于点T,∵BD=2DC∴∴BE:EF=5:1.变式:如图,D是△ABC的BC边上的点,BD:DC=2:1,E是AD的中点,连结BE并延长交AC于F,求AF:CF的值.解法一:过点D作CA的平行线交BF于点P,解法二:过点D作BF的平行线交AC于点Q,解法三:过点E作BC的平行线交AC于点S,解法四:过点E作AC的平行线交BC于点T,例2:如图,在△ABC的AB边和AC边上各取一点D和E,且使AD=AE,DE延长线与BC延长线相交于F,求证:(证明:过点C作CG//FD交AB于G)例3:如图,△ABC中,AB

3、F,证明:AB·DF=AC·EF.分析:证明等积式问题常常化为比例式,再通过相似三角形对应边成比例来证明。不相似,因而要通过两组三角形相似,运用中间比代换得到,为构造相似三角形,需添加平行线。.方法一:过E作EM//AB,交BC于点M,则△EMC∽△ABC(两角对应相等,两三角形相似).方法二:过D作DN//EC交BC于N.例4:在△ABC中,D为AC上的一点,E为CB延长线上的一点,BE=AD,DE交AB于F。求证:EF×BC=AC×DF证明:过D作DG∥BC交AB于G,则△DFG和△EFB相似,∴∵BE=AD,∴由DG∥BC可得△ADG和△ACB相似,∴即∴EF×BC=AC

4、×DF.例5:已知点D是BC的中点,过D点的直线交AC于E,交BA的延长线于F,求证:分析:利用比例式够造平行线,通过中间比得结论.(或利用中点”倍长中线”的思想平移线段EC,使得所得四条线段分别构成两个三角形.)例6:已知:在等腰三角形ABC中,AB=AC,BD是高,求证:BC2=2AC·CD分析:本题的重点在于如何解决“2”倍的问题;让它归属一条线段,找到这一线段2倍是哪一线段.例7:如图,△ABC中,AD是BC边上中线,E是AC上一点,连接ED且交AB的延长线于F点.求证:AE:EC=AF:BF.分析:利用前两题的思想方法,借助中点构造中位线,利用平行与2倍关系的结论,证

5、明所得结论.找到后以比例式所在三角形与哪个三角形相似.例8:在∆ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F,求证:BP²=PE·PF分析:在同一直线上的三条线段成比例,可以通过中间比转化,也可以通过线段相等,把共线的线段转化为两个三角形中的线段,通过相似证明.另外在证明等积式时要先转化为比例式观察相似关系,有利于证明.二、作垂线构造相似直角三角形例9:如图从ABCD顶点C向AB和AD的延长线引垂线CE和CF,垂足分别为E、F,求证:证明:过B作BM⊥AC于M,过D作DN⊥AC于N∴AM:AE=AB:AC(1)(1)+(2)

6、得例10:∆ABC中,AC=BC,P是AB上一点,Q是PC上一点(不是中点),MN过Q且MN⊥CP,交AC、BC于M、N,求证:证明:过P作PE⊥AC于E,PF⊥CB于F,则CEPF为矩形∴PFEC∵∠A=∠B=45°∴RtΔAEP=RtΔPFB∴∵EC=PF∴(1)在ΔECP和ΔCNM中CP⊥MN于Q∴∠QCN+∠QNC=90°又∵∠QCN+∠QCM=90°∴∠MCQ=∠CNQ∴RtΔPEC∽RtΔMCN∴即(2)由(1)(2)得三、作延长线构造相似三角形例11.如图,在梯形ABCD中,AD∥BC,若∠BCD的平分线CH⊥AB于点H,BH=3AH,且四边形AHCD的面积为21

7、,求△HBC的面积。分析:因为问题涉及四边形AHCD,所以可构造相似三角形。把问题转化为相似三角形的面积比而加以解决。解:延长BA、CD交于点P∵CH⊥AB,CD平分∠BCD∴CB=CP,且BH=PH∵BH=3AH∴PA:AB=1:2∴PA:PB=1:3∵AD∥BC∴△PAD∽△PBC例12.如图,RtABC中,CD为斜边AB上的高,E为CD的中点,AE的延长线交BC于F,FG交AB于G,求证:FG=CF·BF分析:欲证式即由“三点定形”,ΔBFG与ΔCFG会相似吗?显然不可能。(因为ΔBF

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。