Back Propagation neural network modeling for warpage prediction

Back Propagation neural network modeling for warpage prediction

ID:40564561

大小:854.23 KB

页数:7页

时间:2019-08-04

Back Propagation neural network modeling for warpage prediction _第1页
Back Propagation neural network modeling for warpage prediction _第2页
Back Propagation neural network modeling for warpage prediction _第3页
Back Propagation neural network modeling for warpage prediction _第4页
Back Propagation neural network modeling for warpage prediction _第5页
资源描述:

《Back Propagation neural network modeling for warpage prediction 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、MaterialsandDesign32(2011)1844–1850ContentslistsavailableatScienceDirectMaterialsandDesignjournalhomepage:www.elsevier.com/locate/matdesBackPropagationneuralnetworkmodelingforwarpagepredictionandoptimizationofplasticproductsduringinjectionmoldingaa,⇑baaFeiYin,HuajieMao,LinHua,WeiG

2、uo,MaoshengShuaSchoolofMaterialsScienceandEngineering,WuhanUniversityofTechnology,Wuhan430070,ChinabSchoolofAutomobileEngineering,WuhanUniversityofTechnology,Wuhan430070,ChinaarticleinfoabstractArticlehistory:WarpageofplasticproductsisanimportantevaluationindexforPlasticInjectionM

3、olding(PIM).ABackReceived13September2010Propagation(BP)neural-networkmodelforwarpagepredictionandoptimizationofinjectedplasticpartsAccepted8December2010hasbeendevelopedbasedonkeyprocessvariablesincludingmoldtemperature,melttemperature,pack-Availableonline17December2010ingpressure,

4、packingtimeandcoolingtimeduringPIM.TheapproachusesaBPneuralnetworktrainedbytheinputandoutputdataobtainedfromtheFiniteElement(FE)simulationswhichareperformedonKeywords:Moldflowsoftwareplatform.Inaddition,akindofautomobileglovecompartmentcapwasutilizedinthisA.Polymersstudy.Trainedbyt

5、heresultsofFEsimulationsconductedbyorthogonalexperimentaldesignmethod,theC.MoldingpredictionsystemgotamathematicalequationmappingtherelationshipbetweentheprocessparameterF.Defectsvaluesandwarpagevalueoftheplastic.Ithasbeenprovedthatthepredictionsystemhastheabilitytopredictthewarpa

6、geoftheplasticwithinanerrorrangeof2%.Processparametershavebeenoptimizedwiththehelpofthepredictionsystem.Meanwhileenergyconsumptionandproductioncyclewerealsotakenintoconsideration.Theoptimizedwarpagevalueis1.58mm,whichisshortenedby32.99%com-paringtotheinitialwarpageresult2.358mm.An

7、dthecoolingtimehasbeendecreasedfrom20sto10s,whichwillgreatlyshortentheproductioncycle.Thefinalproductcansatisfywiththematchingrequire-mentsandfittheautomobileglovecompartmentwell.Ó2010ElsevierLtd.Allrightsreserved.1.Introductionpressure,packingtimeandcoolingtimeasthekeyprocessparam-

8、etersduringPIM.Andtheygottheoptim

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。