Stochastic Modelling Hints for Neural Network Prediction

Stochastic Modelling Hints for Neural Network Prediction

ID:37659349

大小:222.14 KB

页数:24页

时间:2019-05-27

Stochastic Modelling Hints for Neural Network Prediction_第1页
Stochastic Modelling Hints for Neural Network Prediction_第2页
Stochastic Modelling Hints for Neural Network Prediction_第3页
Stochastic Modelling Hints for Neural Network Prediction_第4页
Stochastic Modelling Hints for Neural Network Prediction_第5页
资源描述:

《Stochastic Modelling Hints for Neural Network Prediction》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、StochasticModellingHintsforNeural1NetworkBasedTimeSeriesPredictions2RaduDrossuZoranObradovicrdrossu@eecs.wsu.eduzoran@eecs.wsu.eduSchoolofElectricalEngineeringandComputerScienceWashingtonStateUniversity,Pullman,Washington,99164-2752AbstractTheobjectiveofthisstudyistoinvestigatethere

2、lationshipbetweenstochasticandneuralnetworkapproachestotimeseriesmodelling.Experimentsonbothacomplexreallifepredictionproblem(entertainmentvideotracseries)aswellasonanarti ciallygeneratednonlineartimeseriesonthevergeofchaoticbehavior(Mackey-Glassseries)indicatethattheinitialknowledg

3、eobtainedthroughstochasticanalysisprovidesareasonablygoodhintfortheselectionofanappropriateneuralnetworkarchitecture.Althoughnotnecessarilytheoptimal,sucharapidlydesignedneuralnetworkarchitectureperformedcomparableorbetterthanmoreelaboratelydesignedneuralnetworksobtainedthroughexpens

4、ivetrialanderrorprocedures.Keywords:timeseries,non-stationaryprocess,ARMAmodelling,neuralnetworkmod-elling,predictionhorizon.1Correspondence:Z.Obradovic,phone:(509)335-6601,Fax:(509)335-38182ResearchsponsoredinpartbytheNSFresearchgrantNSF-IRI-9308523.1INTRODUCTIONAtimeseriesxcanbede

5、 nedasarandom(ornondeterministic)functionxofantindependentvariablet[6].Itsmaincharacteristicisthatitsfuturebehaviorcannotbepredictedexactlyasinthecaseofadeterministicfunctionoft.However,thebehaviorofatimeseriescansometimesbeanticipatedbydescribingtheseriesthroughprobabilisticlaws.Com

6、monly,timeseriespredictionproblemsareapproachedeitherfromastochasticperspective[1]or,morerecentlyfromaneuralnetworkperspective[9,12].Eachoftheseapproacheshasadvantagesanddisadvantages:thestochasticmethodsareusuallyfast,butoflimitedapplicabilitysincetheycommonlyemploylinearmodels,wher

7、eastheneuralnet-workmethodsarepowerfulenough,buttheselectionofanappropriatearchitectureandparametersisatimeconsumingtrialanderrorprocedure.At rstglanceitmightseemthatthereisn'tanydirectrelationshipbetweentimeseriesandneuralnetworks,butthereareatleasttworeasonsthatmightmakeneuralnetwo

8、rksveryattra

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。