2006 neural-network based analysis and prediction of a compressor characteristic performance map

2006 neural-network based analysis and prediction of a compressor characteristic performance map

ID:30277376

大小:204.18 KB

页数:8页

时间:2018-12-28

2006 neural-network based analysis and prediction of a compressor characteristic performance map_第1页
2006 neural-network based analysis and prediction of a compressor characteristic performance map_第2页
2006 neural-network based analysis and prediction of a compressor characteristic performance map_第3页
2006 neural-network based analysis and prediction of a compressor characteristic performance map_第4页
2006 neural-network based analysis and prediction of a compressor characteristic performance map_第5页
资源描述:

《2006 neural-network based analysis and prediction of a compressor characteristic performance map》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、APPLIEDENERGYAppliedEnergy84(2007)48–55www.elsevier.com/locate/apenergyNeural-networkbasedanalysisandpredictionofacompressor’scharacteristicperformancemapaa,*abYouhongYu,LingenChen,FengruiSun,ChihWuaPostgraduateSchool,NavalUniversityofEngineering,Wuhan430033,PRChinabMechanicalEngi

2、neeringDepartment,USNavalAcademy,Annapolis,MD21402,USAAvailableonline15June2006AbstractThedifficulties,duetoalackofinformationaboutstage-by-stageaxial-compressorperformance,areanalyzed.Toovercometheseissues,athree-layerback-propagationneural-networkappliedLevenberg–Marquardtalgorith

3、mispresentedanddiscussed.Theexperimentaldataprovidedbymanufacturersareusedfortheneural-networktraining.Throughtwicetraining,thecompressor’sperformancemapcanbepredicted.Theresultscanbeusedforthedevelopmentofanoff-designmodeloroveralldynamicsimulationofthebehaviourofagas-turbinepower

4、-plant.Ó2006ElsevierLtd.Allrightsreserved.Keywords:Compressor;Characteristicmap;Neural-network;Performanceprediction1.IntroductionTheincreasingsuccessofgas-turbinepower-plantsinindustrialandmarineapplicationsisowedpartlytotheirquickresponsestoloadvariations.Gas-turbinepower-plantp

5、erfor-manceunderISOconditions(burningareferencefuel,suchasnaturalgas,at150°C,atmo-sphericpressure,and60%relativehumidity)isinformationprovidedbymachinemanufactures.Nevertheless,gas-turbinepower-plantfrequentlyoperatesunderoff-designconditions,forinstance,atpartloadorunderdifferentat

6、mosphericconditions,andintheseconditions,thechangesofgas-turbinepower-plantperformancecanbedramatic.Inordertodescribetheoff-designperformanceofgas-turbinepower-plantaccurately,goodpredictions*Correspondingauthor.Tel.:+862783615046;fax:+862783638709.E-mailaddresses:lingenchen@hotmai

7、l.com,lgchenna@yahoo.com(L.Chen).0306-2619/$-seefrontmatterÓ2006ElsevierLtd.Allrightsreserved.doi:10.1016/j.apenergy.2006.04.005Y.Yuetal./AppliedEnergy84(2007)48–5549ofcharacteristiccurvesofgas-turbinepower-plantcomponentsareessential[1].Amajorproblem,however,isalackofinformationa

8、boutstage-by-stageperformance.The

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。