欢迎来到天天文库
浏览记录
ID:40541943
大小:404.10 KB
页数:10页
时间:2019-08-04
《曲线积分曲面积分(I)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第12.4节高斯公式通量与散度一、高斯公式二、通量与散度一.对面积的曲面积分第一类曲面积分二、对坐标的曲面积分第二类曲面积分三、两种曲线积分的关系复习第12.4节高斯公式通量与散度一、高斯公式定理设空间闭区域由分片光滑的闭曲面所围成,函数在上具有一阶连续偏导,则有或其中是取外侧,处法向量的方向余弦.xyzo设所以类似可证其它两式.证明Z轴的直线与的边界曲面的交点恰好是两个.并设穿过内部平行于在面上投影区域为设例1计算其中为曲面所围区域的整个边界曲面的外侧.xyzo由高斯公式得解解由高斯公式xyz例2计算是平面z=0,z=3及柱面的整个边界曲面的外侧.
2、所围区域例3其中是上半球面的下侧.xyz解添加曲面取上侧.解添加辅助面取上侧.例4.计算,其中为锥面的下侧,是在点处法向量的方向余弦.xyzo二、通量与散度设某向量场由给出,是上点处的单位法向量,即是场内一片有向曲面,具有一阶连续偏导,其中叫做向量场通过曲面向着指定侧的通量或流量则称为向量场的散度.记作即高斯公式可写成例5.求向量场穿过曲面流向指定侧的流量.其中流向外侧.是以点为球心,半径的球面,解例6求向量场的散度.解流过圆柱面例7已知流体的速度场为,试求单位时间内介于平面之间部分的外侧的流量(流体的密度为1)。解添加辅助面取上侧.取下侧.xyz
此文档下载收益归作者所有