资源描述:
《Approximate Expectation Propagation for Bayesian Inference on Large-scale Problems》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、ApproximateExpectationPropagationforBayesianInferenceonLarge-scaleProblemsYuanQi,TommiS.Jaakkola,andDavidK.Giord,MITComputerScienceandArticialIntelligenceLaboratoryOctober,20051IntroductionInthisreport,wepresentanovelapproachforapproximateBayesianinferenc
2、eonlarge-scalenetworks.Specically,weconsiderthefollowingmodel.First,wewritedownthelikelihoodfunctionofthedataasYYkp(yjb;s)=p(yijb;s)(1)kiYYXk=N(yijaji jjsjbj;i):(2)kij:aji jj>0wherekindexesexperimentalreplicates,iindexestheprobepositions,jindexesthebindi
3、ngPpositions,andN(jjaPji jjsjbj;i)representstheprobabilitydensityfunctionofaGaussiandistributionwithmeanjaji jjsjbjandvariancei.Weassignpriordistributionsonthebindingeventbjandthebindingstrengthsj:p(bj)=bj(1 )1 bj(3)jjjjp0(sj)=Gamma(sjjc0;d0)(4)whereG
4、amma(jc0;d0)standsfortheprobabilitydensityfunctionsofGammadistributionswithhyperparametersc0andd0.Weassignahyperpriordistributiononthebindingprobabilityjas:p0(j)=Beta(jj0;0)(5)2ApproximateExpectationPropagationforBayesianinferenceFirst,giventhedatalike
5、lihood(2),thepriordistributions(3)and(4)onthebindingeventbandstrengths,andthehyperpriordistribution(5)onthebindingprobability,theposteriordistributionp(b;s;jy)isproportionaltothejointdistributionp(b;s;;y):YYp(b;s;jy)/p(b;s;;y)=gi(b;s)p0(j)fj(bj;j)p0(
6、sj)ij1whereiindexesprobepositions,Pjindexesbindingpositions,fj(bj;j)=p(bjjj)isthepriorforb,g(b;s)=N(yjasb;)isthelikelihoodfortheobservationattheithjiijji jjjjiprobeposition,p0(j)isthehyperpriordistributionofj,andp(bjjj)andp0(sj)arethepriordistribution
7、sofbjandsj,respectively.Forsimplicityandclarity,herewedropthesuperscriptk,whichindexesreplicates,andonlyconsiderthecaseofonereplicate.Sincetheposteriordistributionp(b;s;jy)cannotbecomputedinaclosedform,weuseEPtoapproximatethiscomplicatedposteriordistributi
8、onbyadistributionintheexponentialfamily.EPexploitsthefactthattheposteriorisaproductofsimpleterms.EPiterativelyrenestheapproximationofeachtermtoimprovetheapproximationoftheposterior.Mathemati-cally,EPa