Approximate Expectation Propagation for Bayesian Inference on Large-scale Problems

Approximate Expectation Propagation for Bayesian Inference on Large-scale Problems

ID:40351512

大小:117.81 KB

页数:6页

时间:2019-07-31

Approximate Expectation Propagation for Bayesian Inference on Large-scale Problems_第1页
Approximate Expectation Propagation for Bayesian Inference on Large-scale Problems_第2页
Approximate Expectation Propagation for Bayesian Inference on Large-scale Problems_第3页
Approximate Expectation Propagation for Bayesian Inference on Large-scale Problems_第4页
Approximate Expectation Propagation for Bayesian Inference on Large-scale Problems_第5页
资源描述:

《Approximate Expectation Propagation for Bayesian Inference on Large-scale Problems》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ApproximateExpectationPropagationforBayesianInferenceonLarge-scaleProblemsYuanQi,TommiS.Jaakkola,andDavidK.Gi ord,MITComputerScienceandArti cialIntelligenceLaboratoryOctober,20051IntroductionInthisreport,wepresentanovelapproachforapproximateBayesianinferenc

2、eonlarge-scalenetworks.Spe ci cally,weconsiderthefollowingmodel.First,wewritedownthelikelihoodfunctionofthedataasYYkp(yjb;s)=p(yijb;s)(1)kiYYXk=N(yijajijjsjbj;i):(2)kij:ajijj>0wherekindexesexperimentalreplicates,iindexestheprobepositions,jindexesthebindi

3、ngPpositions,andN(jjaPjijjsjbj;i)representstheprobabilitydensityfunctionofaGaussiandistributionwithmeanjajijjsjbjandvariancei.Weassignpriordistributionsonthebindingeventbjandthebindingstrengthsj:p(bj)=bj(1)1bj(3)jjjjp0(sj)=Gamma(sjjc0;d0)(4)whereG

4、amma(jc0;d0)standsfortheprobabilitydensityfunctionsofGammadistributionswithhyperparametersc0andd0.Weassignahyperpriordistributiononthebindingprobabilityjas:p0(j)=Beta(jj0; 0)(5)2ApproximateExpectationPropagationforBayesianinferenceFirst,giventhedatalike

5、lihood(2),thepriordistributions(3)and(4)onthebindingeventbandstrengths,andthehyperpriordistribution(5)onthebindingprobability,theposteriordistributionp(b;s;jy)isproportionaltothejointdistributionp(b;s;;y):YYp(b;s;jy)/p(b;s;;y)=gi(b;s)p0(j)fj(bj;j)p0(

6、sj)ij1whereiindexesprobepositions,Pjindexesbindingpositions,fj(bj;j)=p(bjjj)isthepriorforb,g(b;s)=N(yjasb;)isthelikelihoodfortheobservationattheithjiijjijjjjiprobeposition,p0(j)isthehyperpriordistributionofj,andp(bjjj)andp0(sj)arethepriordistribution

7、sofbjandsj,respectively.Forsimplicityandclarity,herewedropthesuperscriptk,whichindexesreplicates,andonlyconsiderthecaseofonereplicate.Sincetheposteriordistributionp(b;s;jy)cannotbecomputedinaclosedform,weuseEPtoapproximatethiscomplicatedposteriordistributi

8、onbyadistributionintheexponentialfamily.EPexploitsthefactthattheposteriorisaproductofsimpleterms.EPiterativelyre nestheapproximationofeachtermtoimprovetheapproximationoftheposterior.Mathemati-cally,EPa

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。