Bayesian inference and the parametric bootstrap Efron 2013 .pdf

Bayesian inference and the parametric bootstrap Efron 2013 .pdf

ID:34747326

大小:437.26 KB

页数:27页

时间:2019-03-10

Bayesian inference and the parametric bootstrap Efron 2013 .pdf_第1页
Bayesian inference and the parametric bootstrap Efron 2013 .pdf_第2页
Bayesian inference and the parametric bootstrap Efron 2013 .pdf_第3页
Bayesian inference and the parametric bootstrap Efron 2013 .pdf_第4页
Bayesian inference and the parametric bootstrap Efron 2013 .pdf_第5页
资源描述:

《Bayesian inference and the parametric bootstrap Efron 2013 .pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、TheAnnalsofAppliedStatistics2012,Vol.6,No.4,1971–1997DOI:10.1214/12-AOAS571cInstituteofMathematicalStatistics,2012BAYESIANINFERENCEANDTHEPARAMETRICBOOTSTRAPByBradleyEfron1StanfordUniversityTheparametricbootstrapcanbeusedfortheefficientcomputa-tionofBayesposteriordistributions.Imp

2、ortancesamplingformulastakeonaneasyformrelatingtothedevianceinexponentialfami-liesandareparticularlysimplestartingfromJeffreysinvariantprior.Becauseofthei.i.d.natureofbootstrapsampling,familiarformulasdescribethecomputationalaccuracyoftheBayesestimates.Besidescomputationalmethod

3、s,thetheoryprovidesaconnectionbetweenBayesianandfrequentistanalysis.Efficientalgorithmsforthefre-quentistaccuracyofBayesianinferencesaredevelopedanddemon-stratedinamodelselectionexample.1.Introduction.Thisarticleconcernstheuseoftheparametricboot-straptocarryoutBayesianinferenceca

4、lculations.Twomainpointsaremade:thatinthecomparativelylimitedsetofcaseswherebootstrapmeth-odsapply,theyofferanefficientandcomputationallystraightforwardwaytocomputeposteriordistributionsandestimates,enjoyingsomeadvantagesoverMarkovchaintechniques;and,moreimportantly,thattheparamet

5、ricbootstraphelpsconnectBayesandfrequentistpointsofview.Thebasicideaissimpleandnotunfamiliar:thatthebootstrapisuse-fulforimportancesamplingcomputationofBayesposteriordistributions.AnimportantpaperbyNewtonandRaftery(1994)suggestedaversionofnonparametricbootstrappingforthispurpos

6、e.By“goingparametric”wecanmaketheBayes/bootstraprelationshipmoretransparent.ThislineofthoughthastheadvantageoflinkingratherthanseparatingfrequentistandBayesianpractices.arXiv:1301.2936v1[stat.AP]14Jan2013Section2introducesthemainideasintermsofanelementaryone-parame-terexamplean

7、dillustratesaconnectionbetweenJeffreysinvariantpriorden-sityandsecond-orderaccuratebootstrapconfidencelimits.BothmethodsReceivedMay2012;revisedMay2012.1SupportedinpartbyNIHGrant8R01EB002784andbyNSFGrantDMS-08-04324/12-08787.Keywordsandphrases.Jeffreysprior,exponentialfamilies,devi

8、ance,generalizedlin-earmodels.Thisisanelectronicreprin

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。