欢迎来到天天文库
浏览记录
ID:40363211
大小:5.24 MB
页数:8页
时间:2019-08-01
《Bayesian Information Recovery from CNN for Probabilistic Inference》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、2018IEEE/RSJInternationalConferenceonIntelligentRobotsandSystems(IROS)Madrid,Spain,October1-5,2018BayesianInformationRecoveryfromCNNforProbabilisticInferenceDmitryKopitkovandVadimIndelmanAbstract—Typicalinferenceapproachesthatworkwithhigh-dimensionalvisu
2、almeasurementsusehand-engineeredimagefeatures(e.g.SIFT)thatrequirecombinatorialdataassociation,orpredictonlyhiddenstatemeanwithoutconsideringitsuncertaintyandmulti-modalityaspects.WedevelopanovelapproachtoinfersystemhiddenstatefromvisualobservationsviaCN
3、NfeatureswhichareoutputsofaCNNclassifier.Tothatend,atpre-deploymentstageweuseneuralnetworksto(a)learnagenerativeviewpoint-dependentmodelofCNNfeaturesgiventherobotposeandapproximatethismodelbyaspatially-varyingGaussiandistribution.Further,atdeploymentthism
4、odelisutilizedwithinaBayesianframeworkforproba-bilisticinference,consideringarobotlocalizationproblem.Ourmethoddoesnotinvolvedataassociationandprovidesuncertaintycovarianceofthefinalestimation.Moreover,weshowempiricallythattheCNNfeaturelikelihoodisunimoda
5、lwhichsimplifiestheinferencetask.WetestourmethodinasimulatedUnrealEngineenvironment,wherewesucceedtoretrievehigh-levelstateinformationfromCNNfeaturesandproducetrajectoryestimationwithhighaccuracy.Additionally,weanalyzerobustnessofourapproachtodifferentlig
6、htconditions.I.INTRODUCTIONInferringasystemstatefrommultiplemeasurements,pos-siblycapturedbydifferentsensors,isafundamentalproblem(b)Fig.1:Approachoverview.InthispaperweuseCNNfeaturesforrobot’sstateinrobotics.Bayesianinferenceforsystemidentificationisinfe
7、rencewithinaBayesianframework.Animagecapturedfromrobotposexioneofthemainbuildingblocksonwhichmodernreal-ispassedtoaCNNclassifierwhichproducesafeaturesvectorfithatrepresentstheimage.(a)Duringthepre-deploymentstagewelearnspatially-varyingCNNworldroboticappl
8、icationsrely,suchasautonomousnavi-probabilitylikelihoodP(fijxi)approximatedbyN((xi);(xi)).Twoneuralgationandsimultaneouslocalizationandmapping(SLAM).networksproduceviewpoint-dependentmeanandcovariancefunctionsoffigivenxi
此文档下载收益归作者所有