probabilistic reasoning with nave bayes and bayesian networks overview

probabilistic reasoning with nave bayes and bayesian networks overview

ID:34488046

大小:648.58 KB

页数:22页

时间:2019-03-06

probabilistic reasoning with nave bayes and bayesian networks overview_第1页
probabilistic reasoning with nave bayes and bayesian networks overview_第2页
probabilistic reasoning with nave bayes and bayesian networks overview_第3页
probabilistic reasoning with nave bayes and bayesian networks overview_第4页
probabilistic reasoning with nave bayes and bayesian networks overview_第5页
资源描述:

《probabilistic reasoning with nave bayes and bayesian networks overview》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、ProbabilisticReasoningwithNaïveBayesandBayesianNetworks1ZdravkoMarkov,IngridRussellJuly,2007OverviewBayesian(alsocalledBelief)Networks(BN)areapowerfulknowledgerepresentationandreasoningmechanism.BNrepresenteventsandcausalrelationshipsbetweenthemasconditionalprobabilitiesinvolvingrandomvariables.Give

2、nthevaluesofasubsetofthesevariables(evidencevariables)BNcancomputetheprobabilitiesofanothersubsetofvariables(queryvariables).BNcanbecreatedautomatically(learnt)byusingstatisticaldata(examples).Thewell-knownMachineLearningalgorithm,NaïveBayesisactuallyaspecialcaseofaBayesianNetwork.Theprojectallowsst

3、udentstoexperimentwithandusetheNaïveBayesalgorithmandBayesianNetworkstosolvepracticalproblems.Thisincludescollectingdatafromrealdomains(e.g.webpages),convertingthesedataintoproperformatsothatconditionalprobabilitiescanbecomputed,andusingBayesianNetworksandtheNaïveBayesalgorithmforcomputingprobabilit

4、iesandsolvingclassificationtasks.ObjectivesTheaimofthisprojectistoexposestudentstotwoimportantreasoningandlearningalgorithms–NaïveBayesandBayesianNetworks,andtoexploretheirrelationshipinthecontextofsolvingpracticalclassificationproblems.Inparticular,theobjectivesoftheprojectare:•LearningthebasicsofB

5、ayesianapproachtoMachineLearningandtheBayesianNetworksapproachtoProbabilisticReasoninginAI.•Gainingexperienceinusingrecentsoftwareapplicationsintheseareasforsolvingpracticalproblems.•BetterunderstandingoffundamentalconceptsofBayesianLearningandProbabilisticReasoningandtheirrelationshipinthemoregener

6、alcontextofknowledgerepresentationandreasoningmechanismsinAI.ProjectDescription1Correspondingauthor:markovz@ccsu.edu,DepartmentofComputerScience,CentralConnecticutStateUniversity,1615StanleyStreet,NewBritain,CT06050.SimilarlytotheWebdocumentclassificationproject(http://uhaweb.hartford.edu/compsci/cc

7、li/wdc.htm)thisprojectalsohasthreemainsteps:Datacollection,Datapreparation,andMachineLearning.Thefirsttwostepsofthetwoprojectsarebasicallythesame.Infact,documentsanddatasetsinWeka’sARFFformatpreparedf

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。