《三角形全等的判定》(边边边)教案

《三角形全等的判定》(边边边)教案

ID:40337603

大小:113.94 KB

页数:5页

时间:2019-07-31

《三角形全等的判定》(边边边)教案_第1页
《三角形全等的判定》(边边边)教案_第2页
《三角形全等的判定》(边边边)教案_第3页
《三角形全等的判定》(边边边)教案_第4页
《三角形全等的判定》(边边边)教案_第5页
资源描述:

《《三角形全等的判定》(边边边)教案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、三角形全等的判定(一)教学目标1.构建探索三角形全等条件的思路,体会研究几何问题的方法.2.探索并理解“边边边”判定方法,体验利用操作、归纳获得数学结论的过程.3.会用“边边边”判定方法证明三角形全等.会用尺规作一个角等于已知角,了解作图的依据.教学重点:构建探索三角形全等条件的思路,理解并运用“边边边”判定方法.教学难点:1.构建探索三角形全等条件的思路。2.用尺规作一个角等于已知角教学准备:多媒体课件、两块全等的三角形纸板、直尺、圆规、学案等.教学过程:一、复习旧知,尝试解决生活问题,初识“全等判定”,构建探索思路1.请你思考后回答:什么叫做全

2、等三角形?根据这个定义,你知道的全等三角形有哪些性质?你怎样去判定两个三角形全等?师生活动:教师根据学生回答,在黑板上用符号语言表示这一判定方法.在△ABC和△A′B′C′中,∵∴△ABC≌△A′B′C′2.尝试应用:小明家的衣橱上镶有两块全等的三角形玻璃装饰物,其中一块被打碎了,妈妈让小明到玻璃店配一块回来,请你说说小明该怎么办?并说说这样做的依据是什么?师生活动:学生先在小组内交流,再在全班展示结果.3.请你继续思考:是否一定需要六个条件才能判定两个三角形全等呢?能否减少个三角形全等的判定?你想从几个条件开始研究?师生活动:学生畅说欲言,交换,

3、确定先从“一个条件”开始,不行就两个“两个条件”,再不行就“三个条件”……的顺序来探究三角形全等的条件。二、动手操作,感知由“一个条件”“两个条件”不能确定两个三角形全等活动1.请你观察手中的一副三角尺,思考后回答:只给一个条件相等的两个三角形一定全等吗?师生活动:学生独立观察、比较后,再个人展示,有不同想法补充说明,发现:有一条边或一个角相等的两个三角形不一定全等.一起归纳得出:只有一个条件对应相等的两个三角形不一定全等。活动二:那么我们现在给出两个条件分别相等,你可以观察手中的三角尺,也可以依据条件在学案上画图,思考后回答,有两个条件分别相等的

4、两个三角形全等吗?条件举例:①三角形两内角分别为30°和60°.②三角形两条边分别为4cm、6cm.③三角形一内角为30°,一条边为6cm.师生活动:生先独立思考,按要求动手操作,有结果后在组内交流,然后后派代表在全班举例说明你们讨论的结果.最后共同归纳结果:有两个条件对应相等的两个三角形也不一定全等。三、类比探究,尺规作图,理解“SSS”判定方法问题:现在给出三个条件分别相等,来探究这样的两个三角形一定全等吗?同学们根据下面的问题探究:1.思考并回答:根据前面的探究,你能说出三个条件分别相等有几种可能的情况吗?师生活动:学生先组内讨论、再组间相互

5、补充得到有四种情况,即:三条边、三个内角、两边一角、两角一边.我们先从最基本的同类元素开始探究,三个角或三条边分别相等的情况.2.一起来观察:用你们手中的三角尺和老师手中的三角尺,你们很快发现三个角分别相等的两个三角形不一定全等.下面我们再来研究三条边分别相等的情况(其他几种情况以后再研究)3.动手跟我画:先任意画一个△ABC,再画出一个三角形A′B′C′,使AB=A′B′、AC=A′C′、BC=B′C′.将画好的△A′B′C′剪下来,放到△ABC上,看看他们全等吗?师生活动:教师演示画图过程,学生跟老师一起用尺规作图,画完后剪下其中一个,与另一个

6、叠放比较,发现他们全等.4.我善于归纳:作图的结果反映了怎样的结论?你能用文字语言和数学符号语言概括这个结论吗?师生活动:学生先尝试归纳,然后小组内交流,再全班展示,师板书.三边对应相等的两个三角形全等,简写为“边边边”或“SSS”.ABCD这反映了一个基本事实,它用符号语言表示为:在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′5.我思故我用:这个基本事实能帮助我们解决什么问题?(1)问题2中小明家的玻璃问题,你有更简单的方法了吗?(2)前面做过的实验,用三根木条能钉成一个固定的三角形木架,你能解释其中的道理吗?师生活动:问题比较简单,学

7、生独立思考后,举手回答,其他同学补充。四、应用“SSS”判定方法,解决问题,尝试演绎推理.例ABCDABCD.如图,△ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架.求证:△ABD≌△ACD.变式:判断∠BAD的∠CAD数量关系,并证明之.师生活动:师生共同分析解题思路,要证△ABD≌△ACD,可以看这两个三角形的三条边是否对应相等.注意隐含条件的挖掘和必要条件的证明.师给出规范的板书:证明:∵D是BC的中点,∴BD=DC,在△ABD和△ACD,∴△ABD≌△ACD(SSS).我来想,我来画:您能用直尺和圆规做一个角等于已知角吗?师

8、生活动:师生分别画出一个任意角,教师板书已知和求作的内容,学生尝试自己画图,如果没有思路,教师进一步提示:将已知角放在一个

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。