主成分分析原理

主成分分析原理

ID:40270846

大小:391.50 KB

页数:16页

时间:2019-07-30

主成分分析原理_第1页
主成分分析原理_第2页
主成分分析原理_第3页
主成分分析原理_第4页
主成分分析原理_第5页
资源描述:

《主成分分析原理》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、Cronbach信度系数α的取值范围到底是多大?真如好多专业书上所说是【0,1】吗?对于α的取值范围很多数书上的表达都比较模糊,普遍认为α信度系数的值一般在0和1之间。更有学者给出了经验判定值,他们认为在基础研究中α系数至少应达到0.8才能接受,在探索研究中α系数至少应达到0.7才能接受,而在实务研究中α系数只需达到0.6即可。那么,到底α的理论取值范围是多大呢? 我们先看α信度系数的计算公式:a=[K/(K-1)]×[1-(∑S2i)/(S2x)]。其中,K为量表中题项的总数,S2i为第i题得分的题内方差,S2x为

2、全部题项总得分的方差。需要强调的是S2x是总得分的方差,而不是总离差平方和。此前笔者因为没有看清楚公式,误把总得分的方差理解为总离差平方和,在此自汗一个!在方差分析中,总离差一定大于组内离差差;但是总得分方差却有可能小于题内方差。经过我的计算,α值的理论区间应该是(-∞,1]。比如这两组数据:1、2、3、4、5与5,4,3,2,2。经计算两列数据的α信度系数为-40。如若不信,您大可打开spss自己算一算,消除一下疑虑,所谓实践出真知。 难道专家教授们错了?几百万的莘莘学子又被忽悠了?其实,倒也是不。实际中α系数检测

3、的是数据间的内部一致性。也就是说,在潜在的前提假设中,数据内部应该是基本一致的,行话就是正相关,所以范围通常在[0,1]之间。α值用来表示这些数据间一致程度。如果出现负值,则说明多列数据不一致。但是,-α值又不能简单地理解成内部不一致系数,因为α是专门为测量一致性而设置的,α只在表示一致性上有意义,或者可以说成是只在α值大于0时才有意义。当多列数据的之间不是正相关时,总得分方差S2x可能小于题内方差∑S2i,所以负值就会出现。只是相关系数用于测量两变量之间的关系,而α系数可用于测量多个变量。 信度检验测量的是可靠性。

4、实际的问卷调查中,一般用a系数检验数据内部的一致性!但是,检验的前提是数据内部应该是一致的,或者理论上是一致的。比如:做一项教室卫生程度的调查,地板、桌子、玻璃,理论上洁净程度应该一致,要么都脏,要么都干净。所以可以用α系数测度内部的一致性。但是如果内部本来就不一致,检验将没有意义。比如清洁员只打扫了地板、抹桌子,却忘记了擦玻璃。那么地板和桌子可能一尘不染,但是玻璃却会满脸污脏。面对这样的事实,计算出来的a信度系数,就可能是负值了。所以,当a系数为负时,也不必大惊小怪。这可能反映了数据内部本身的不一致,但更可能的是你

5、忘记把调查中的反向问题正向化了。 相关系数定义与说明相关系数,或称线性相关系数、皮氏积矩相关系数(Pearsonproduct-momentcorrelationcoefficient,PPCC)等,是衡量两个随机变量之间线性相关程度的指标。它由卡尔·皮尔森(KarlPearson)在1880年代提出[1],现已广泛地应用于科学的各个领域。相关系数计算公式相关系数(r)的定义如右图所示,取值范围为[-1,1],r>0表示正相关,r<0表示负相关,

6、r

7、表示了变量之间相关程度的高低。特殊地,r=1称为完全正相关,r=-

8、1称为完全负相关,r=0称为不相关。通常

9、r

10、大于0.8时,认为两个变量有很强的线性相关性。[2]样本相关系数常用r表示,而总体相关系数常用ρ表示。在线性关系不显著时,还可以考虑采用秩相关系数(rankcorrelation),如斯皮尔曼秩相关系数(Spearman'srankcorrelationcoefficient)等。编辑本段相关性质(1)对称性:X与Y的相关系数(rXY)和Y与X之间的相关系数(rYX)相等;  (2)相关系数与原点和尺度无关;(3)若X与Y统计上独立,则它们之间的相关系数为零;但r=0不等

11、于说两个变量是独立的。即零相关并不一定意味着独立性;(4)相关系数是线性关联或线性相依的一个度量,它不能用于描述非线性关系;(5)相关系数只是两个变量之间线性关联的一个度量,不一定有因果关系的含义第七章主成分分析(一)教学目的通过本章的学习,对主成分分析从总体上有一个清晰地认识,理解主成分分析的基本思想和数学模型,掌握用主成分分析方法解决实际问题的能力。(二)基本要求了解主成分分析的基本思想,几何解释,理解主成分分析的数学模型,掌握主成分分析方法的主要步骤。(三)教学要点1、主成分分析基本思想,数学模型,几何解释2、

12、主成分分析的计算步骤及应用(四)教学时数3课时(五)教学内容1、主成分分析的原理及模型2、主成分的导出及主成分分析步骤在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。