[ICCV 2011] Tasting Families of Features for Image Classification

[ICCV 2011] Tasting Families of Features for Image Classification

ID:40254147

大小:690.34 KB

页数:8页

时间:2019-07-29

[ICCV 2011] Tasting Families of Features for Image Classification_第1页
[ICCV 2011] Tasting Families of Features for Image Classification_第2页
[ICCV 2011] Tasting Families of Features for Image Classification_第3页
[ICCV 2011] Tasting Families of Features for Image Classification_第4页
[ICCV 2011] Tasting Families of Features for Image Classification_第5页
资源描述:

《[ICCV 2011] Tasting Families of Features for Image Classification》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、TastingFamiliesofFeaturesforImageClassificationCharlesDuboutandFranc¸oisFleuretIdiapResearchInstitutefcharles.dubout,francois.fleuretg@idiap.chAbstractinx5,vanillaBoostingofstumpsovermultiplefeaturesreachesstate-of-the-artperformance.However,suchtech-Usingmultiplefamiliesofimagefeaturesisaveryef-

2、niquesinducetwomajorpracticaldifficulties:thefirstistheficientstrategytoimproveperformanceinobjectdetectioncomputationalcostofthetraining,whichincreaseslinearlyorrecognition.However,suchastrategyinducesmultiplewiththenumberoffeatures,andthesecondisoverfittingchallengesformachinelearningmethods,bothf

3、romacom-thetrainingdata.Botharerelatedtothenumberoffeaturesputationalandastatisticalperspective.whichareactually“lookedat”duringtraining.ThemaincontributionofthispaperisanovelfeatureWeproposehereastraight-forwardandoriginalstrategysamplingproceduredubbed“Tasting”toimprovetheeffi-dubbed“Tasting”to

4、dealwiththatsituation,anduseittociencyofBoostinginsuchacontext.InsteadofsamplingimprovethelossreductioninBoosting.Thismethodsam-featuresinauniformmanner,Tastingcontinuouslyesti-plesafewfeaturesfromeveryfamilybeforethetrainingmatestheexpectedlossreductionforeachfamilyfromaperse,andstorestheirresp

5、onsesovereachtrainingsample.limitedsetoffeaturessampledpriortothelearning,andDuringBoosting,everytimewehavetosamplefeaturestobiasesthesamplingaccordingly.minimizeaweightederror,weusethesestoredfeaturestoWeevaluatetheperformanceofthisprocedurewithtensgetanestimateoftheexpectedreductionofthelossfo

6、reachoffamiliesoffeaturesonfourimageclassificationandob-family,andsampleaccordingly.jectdetectiondata-sets.WeshowthatTasting,whichdoesExperimentsonfourimageclassificationandobjectde-notrequirethetuningofanymeta-parameter,outperformstectionproblemsshowthatTastingsystematicallyoutper-systematicallyv

7、ariantsofuniformsamplingandstate-of-formssophisticatedbaselinesinminimizingboththetrain-the-artapproachesbasedonbanditstrategies.inglossandthetesterror,withoutrequiringthetuningofanyparameter,contrarilytothemostadvancedbasel

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。