资源描述:
《ICCV2011-features.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、PCL::FeaturesMichaelDixonandSuatGedikliNovember6,2011Outline1.Introduction2.FeatureEstimation3.KeypointDetection4.CombiningKeypointsandFeaturesPointCloudLibrary(PCL)IntroductionInthissession,we’lltalkaboutfeaturesandkeypointsinPCL.ILocalfeatureestimationISurfacenormal/curvaturees
2、timationIPointFeatureHistogramdescriptorsIKeypointdetectionI3DSIFTkeypointdetectionIHarris-liekeypointdetectionIGlobalfeatureestimationIViewpointFeatureHistogramdescriptorsPointCloudLibrary(PCL)Outline1.Introduction2.FeatureEstimation3.KeypointDetection4.CombiningKeypointsandFeat
3、uresPointCloudLibrary(PCL)LocalFeaturesWhatisafeature?Whatisafeature?Invision/perception,theword“feature”canmeanmanydifferentthings.InPCL,“featureestimation”means:IcomputingafeaturevectorbasedoneachpointslocalneighborhoodIorsometimes,computingasinglefeaturevectorforthewholecloudP
4、ointCloudLibrary(PCL)LocalFeaturesWhatisafeature?Featurevectorscanbeanythingfromsimplesurfacenormalstothecomplexfeaturedescriptorsneedforregistrationorobjectdetection.Today,we’lllookatacoupleofexamples:ISurfacenormalestimation(NormalEstimation)IPointFeatureHistogramestimation(FPF
5、HEstimation)IViewpointFeatureHistogramestimation(VFHEstimation)PointCloudLibrary(PCL)LocalFeatures(1-2/5)SurfaceNormalEstimation.TheoreticalAspects:BasicIngredientsIGivenapointcloudwithx,y,z3DpointcoordinatesPointCloudLibrary(PCL)LocalFeatures(1-2/5)SurfaceNormalEstimation.Theore
6、ticalAspects:BasicIngredientsIGivenapointcloudwithx,y,z3DpointcoordinatesISelecteachpoint’sk-nearestneighbors,fitalocalplane,andcomputetheplanenormalPointCloudLibrary(PCL)LocalFeatures(3/5)SurfaceNormalandCurvatureEstimationPkT1PkCj=i=1i(pi pj)(pi pj);p=ki=1pi82