Randomized Distribution Feature for Image Classification

Randomized Distribution Feature for Image Classification

ID:40383338

大小:736.49 KB

页数:9页

时间:2019-08-01

Randomized Distribution Feature for Image Classification_第1页
Randomized Distribution Feature for Image Classification_第2页
Randomized Distribution Feature for Image Classification_第3页
Randomized Distribution Feature for Image Classification_第4页
Randomized Distribution Feature for Image Classification_第5页
资源描述:

《Randomized Distribution Feature for Image Classification》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、426ECAI2016G.A.Kaminkaetal.(Eds.)©2016TheAuthorsandIOSPress.ThisarticleispublishedonlinewithOpenAccessbyIOSPressanddistributedunderthetermsoftheCreativeCommonsAttributionNon-CommercialLicense4.0(CCBY-NC4.0).doi:10.3233/978-1-61499-672-9-426RandomizedDistribut

2、ionFeatureforImageClassificationHongmingShanandJunpingZhang∗,1Abstract.andthemetric-basedone.Thehistogram-basedmodelusuallyrep-Localimagefeaturescanbeassumedtobedrawnfromanun-resentseachimagebytheempirical,one-dimensionalhistogramthatknowndistribution.Forimage

3、classification,suchfeaturesarecom-enumeratestheoccurrenceprobabilityofeachpointsetinthebagparedthroughthehistogram-basedmodelorthemetric-basedmodel.ofvisualwords.Here,thecollectionofthesewordsiscalledacode-Byquantizingtheselocalfeaturesintoasetofhistograms,the

4、bookordictionary.Thedisadvantagesofthismethodarethatthehistogram-basedmodelisconvenientandhasvectorialrepresenta-sizeofcodebookisdifficulttoselect,andthecomputationalcostoftionofimagebutinformationcouldbelostinvectorquantization.generatingthecodebookbythequant

5、izationalgorithmsisexpensive.Unlikethehistogram-basedmodel,themetric-basedmodelestimatesBesides,theinformationwillbelostinthequantizationprocess[34].themetricsovertheunderlyingdistributionoflocalfeaturesimmedi-Incontrast,themetric-basedmodelestimatesstatistic

6、almetricsoverately,achievingbetterpredictiveperformance.However,themodeltheunderlyingdistributionofimageswithhigheraccuracy.Thead-requireshighercomputationalcostandlosesthebenefitofvectorialvantageofthismodelisthatitdoesnotrequirequantizationtech-representatio

7、nofimage.niquesandselectingthesizeofcodebook,eachofwhichcouldresultToretaintheadvantagesofthesetwomodels,thispaperproposesinthelossofperformanceinimageclassification.However,thesethe(doubly)randomizeddistributionfeaturesthatrepresenttheun-metricssufferfromhigh

8、computationalcostsincetheyoperateoverderlyingdistributionoflocalfeaturesineachimageasavectorialpairwisesamples.AnotherdrawbackofthemodelisthatthematricesfeaturebyutilizingrandomFourierfea

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。