欢迎来到天天文库
浏览记录
ID:40383338
大小:736.49 KB
页数:9页
时间:2019-08-01
《Randomized Distribution Feature for Image Classification》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、426ECAI2016G.A.Kaminkaetal.(Eds.)©2016TheAuthorsandIOSPress.ThisarticleispublishedonlinewithOpenAccessbyIOSPressanddistributedunderthetermsoftheCreativeCommonsAttributionNon-CommercialLicense4.0(CCBY-NC4.0).doi:10.3233/978-1-61499-672-9-426RandomizedDistribut
2、ionFeatureforImageClassificationHongmingShanandJunpingZhang∗,1Abstract.andthemetric-basedone.Thehistogram-basedmodelusuallyrep-Localimagefeaturescanbeassumedtobedrawnfromanun-resentseachimagebytheempirical,one-dimensionalhistogramthatknowndistribution.Forimage
3、classification,suchfeaturesarecom-enumeratestheoccurrenceprobabilityofeachpointsetinthebagparedthroughthehistogram-basedmodelorthemetric-basedmodel.ofvisualwords.Here,thecollectionofthesewordsiscalledacode-Byquantizingtheselocalfeaturesintoasetofhistograms,the
4、bookordictionary.Thedisadvantagesofthismethodarethatthehistogram-basedmodelisconvenientandhasvectorialrepresenta-sizeofcodebookisdifficulttoselect,andthecomputationalcostoftionofimagebutinformationcouldbelostinvectorquantization.generatingthecodebookbythequant
5、izationalgorithmsisexpensive.Unlikethehistogram-basedmodel,themetric-basedmodelestimatesBesides,theinformationwillbelostinthequantizationprocess[34].themetricsovertheunderlyingdistributionoflocalfeaturesimmedi-Incontrast,themetric-basedmodelestimatesstatistic
6、almetricsoverately,achievingbetterpredictiveperformance.However,themodeltheunderlyingdistributionofimageswithhigheraccuracy.Thead-requireshighercomputationalcostandlosesthebenefitofvectorialvantageofthismodelisthatitdoesnotrequirequantizationtech-representatio
7、nofimage.niquesandselectingthesizeofcodebook,eachofwhichcouldresultToretaintheadvantagesofthesetwomodels,thispaperproposesinthelossofperformanceinimageclassification.However,thesethe(doubly)randomizeddistributionfeaturesthatrepresenttheun-metricssufferfromhigh
8、computationalcostsincetheyoperateoverderlyingdistributionoflocalfeaturesineachimageasavectorialpairwisesamples.AnotherdrawbackofthemodelisthatthematricesfeaturebyutilizingrandomFourierfea
此文档下载收益归作者所有