2012 Learning Hierarchical Feature Extractors For Image Recognition .pdf

2012 Learning Hierarchical Feature Extractors For Image Recognition .pdf

ID:34165264

大小:3.35 MB

页数:195页

时间:2019-03-03

2012 Learning Hierarchical Feature Extractors For Image Recognition .pdf_第1页
2012 Learning Hierarchical Feature Extractors For Image Recognition .pdf_第2页
2012 Learning Hierarchical Feature Extractors For Image Recognition .pdf_第3页
2012 Learning Hierarchical Feature Extractors For Image Recognition .pdf_第4页
2012 Learning Hierarchical Feature Extractors For Image Recognition .pdf_第5页
资源描述:

《2012 Learning Hierarchical Feature Extractors For Image Recognition .pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、LearningHierarchicalFeatureExtractorsForImageRecognitionbyY-LanBoureauAdissertationsubmittedinpartialfulfillmentoftherequirementsforthedegreeofDoctorofPhilosophyDepartmentofComputerScienceNewYorkUniversitySeptember2012YannLeCunJeanPoncecY-LanBoureauAllRightsReserved,2012DEDICATIONTomyparen

2、ts.iiiACKNOWLEDGMENTSIamaboveallgratefultoYannLeCunandJeanPonce,forprovidingmepatientandinsightfulguidanceduringmyyearsastheirstudent.Manythanksaswelltotheothermembersofmythesiscommitteeforgivingmefeedbackandideas.IwouldliketothankFrancisBachforbeingsuchagreatinspirationandsharpdiscussant

3、;Ihavebeenveryluckytoworkwithhim,aswellasMarc’AurelioRanzato,NicolasLeRoux,KorayKavukcuoglu,andPierreSermanet,andSamyBengioandJasonWestonatGoogle.ManyideasinthisthesiswerebornwhilediscussingwithmembersoftheWillowandSierrateams,andtheComputationalandBiologicalLearningLab.Finally,Ithankmyfa

4、milyandfriendsforencouragingmeandbearingwithmeduringalltheseyears.ThisworkwassupportedbyNSFgrantEFRI/COPN-0835878toNYU,ONRcon-tractN00014-09-1-0473toNYUandbytheEuropeanResearchCouncil(VideoWorldandSierragrants).ivABSTRACTTellingcowfromsheepiseffortlessformostanimals,butrequiresmuchenginee

5、ringforcomputers.Inthisthesis,weseektoteaseoutbasicprinciplesthatunderliemanyrecentadvancesinimagerecognition.First,werecastmanymethodsintoacommonunsu-pervisedfeatureextractionframeworkbasedonanalternationofcodingsteps,whichencodetheinputbycomparingitwithacollectionofreferencepatterns,and

6、poolingsteps,whichcomputeanaggregationstatisticsummarizingthecodeswithinsomere-gionofinterestoftheimage.Withinthatframework,weconductextensivecomparativeevaluationsofmanycodingorpoolingoperatorsproposedintheliterature.Ourresultsdemonstratearobustsuperiorityofsparsecoding(whichdecomposesan

7、inputasalinearcombinationofafewvisualwords)andmaxpooling(whichsummarizesasetofinputsbytheirmaximumvalue).Wealsoproposemacrofeatures,whichimportintothepopu-larspatialpyramidframeworkthejointencodingofnearbyfeaturescommonlypracticedinneuralnetworks,andobtainsignificant

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。