次函数与一元二次方程(第1课时)

次函数与一元二次方程(第1课时)

ID:40218702

大小:1.31 MB

页数:9页

时间:2019-07-26

次函数与一元二次方程(第1课时)_第1页
次函数与一元二次方程(第1课时)_第2页
次函数与一元二次方程(第1课时)_第3页
次函数与一元二次方程(第1课时)_第4页
次函数与一元二次方程(第1课时)_第5页
资源描述:

《次函数与一元二次方程(第1课时)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、九年级上册22.2二次函数与一元二次方程(第1课时)问题:如图以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t-5t2考虑以下问题:(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地需要用多少时间?所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值;否则

2、,说明球的飞行高度不能达到问题中h的值.解:(1)解方程15=20t-5t2t2-4t+3=0t1=1,t2=3当球飞行1s和3s时,它的高度为15m.分析:由于球的飞行高度h与飞行时间t的关系是二次函数h=20t-5t2t1=1st2=3s15m15m(2)解方程20=20t-5t2t2-4t+4=0t1=t2=2当球飞行2s时,它的高度为20m.t1=2s20m(3)解方程20.5=20t-5t2t2-4t+4.1=0因为(-4)2-4×4.1<0,所以方程无解.球的飞行高度达不到20.5m.20m(4)解方程0=20t-5t2t2-4t=0t1=0,t2=4当球飞行0s和4s时

3、,它的高度为0m,即0s时球从地面发出,4s时球落回地面.0s4s从上面可以看出,二次函数与一元二次方程关系密切.一般地,我们可以利用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0例如,已知二次函数y=-x2+4x的值为3,求自变量x的值,可以解一元二次方程-x2+4x=3(即x2-4x+3=0).反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4x+3的值为0,求自变量x的值.观察下列二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗?(1)y=x2+x-

4、2(2)y=x2-6x+9(3)y=x2-x+1(1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1.当x取公共点的横坐标时,函数的值是0.由此得出方程x2+x-2=0的根是-2,1.(2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3.当x=3时,函数的值是0.由此得出方程x2-6x+9=0有两个相等的实数根3.(3)抛物线y=x2-x+1与x轴没有公共点,由此可知,方程x2-x+1=0没有实数根.xyO1y=x2-6x+9y=x2-x+1y=x2+x-2(2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点,这对应着一元

5、二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根.归纳一般地,从二次函数y=ax2+bx+c的图象可知(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数的值是0,因此x=x0就是方程ax2+bx+c=0的一个根.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。