欢迎来到天天文库
浏览记录
ID:40163167
大小:1.41 MB
页数:22页
时间:2019-07-24
《大学复变函数与积分变换》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二节解析函数的概念一、复变函数的导数与微分二、解析函数的概念三、小结与思考1一、复变函数的导数与微分1.导数的定义:2在定义中应注意:3例1解4例2解56例3解782.可导与连续:函数f(z)在z0处可导则在z0处一定连续,但函数f(z)在z0处连续不一定在z0处可导.证9[证毕]103.求导法则:由于复变函数中导数的定义与一元实变函数中导数的定义在形式上完全一致,并且复变函数中的极限运算法则也和实变函数中一样,因而实变函数中的求导法则都可以不加更改地推广到复变函数中来,且证明方法也是相同的.求导公式与法则:11124.微分的
2、概念:复变函数微分的概念在形式上与一元实变函数的微分概念完全一致.定义13特别地,14二、解析函数的概念1.解析函数的定义152.奇点的定义根据定义可知:函数在区域内解析与在区域内可导是等价的.但是,函数在一点处解析与在一点处可导是不等价的概念.即函数在一点处可导,不一定在该点处解析.函数在一点处解析比在该点处可导的要求要高得多.16例4解17定理以上定理的证明,可利用求导法则.18根据定理可知:(1)所有多项式在复平面内是处处解析的.19三、小结与思考理解复变函数导数与微分以及解析函数的概念;掌握连续、可导、解析之间的关系以及
3、求导方法.注意:复变函数的导数定义与一元实变函数的导数定义在形式上完全一样,它们的一些求导公式与求导法则也一样,然而复变函数极限存在要求与z趋于零的方式无关,这表明它在一点可导的条件比实变函数严格得多.20思考题21思考题答案反之不对.放映结束,按Esc退出.22
此文档下载收益归作者所有