欢迎来到天天文库
浏览记录
ID:40159077
大小:209.04 KB
页数:7页
时间:2019-07-23
《八年级下册数学试卷答案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、八年级下册数学试卷答案2018.3一、选择题(每小题2分,共12分)1.下列各式一定是二次根式的是( )A.B.C.D.【解答】解:A、二次根式无意义,故A错误;B、是三次根式,故B错误;C、被开方数是正数,故C正确;D、当b=0或a、b异号时,根式无意义,故D错误.故选:C.2.下列二次根式中的最简二次根式是( )A.B.C.D.【解答】解:A、符合最简二次根式的定义,故本选项正确;B、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;C、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、被开方数含分母
2、,不是最简二次根式,故本选项错误;故选:A3.一直角三角形的两边长分别为3和4.则第三边的长为( )A.5B.C.D.5或【解答】解:(1)当两边均为直角边时,由勾股定理得,第三边为5,(2)当4为斜边时,由勾股定理得,第三边为,故选:D.4.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于( )A.2cmB.3cmC.4cmD.5cm【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB
3、﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B.5.等式成立的条件是( )A.x≥1B.x≥﹣1C.﹣1≤x≤1D.x≥1或x≤﹣1【解答】解:∵,∴,解得:x≥1.故选A.6.如果=1﹣2a,则( )A.a<B.a≤C.a>D.a≥【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.二、填空题(共8小题,每小题3分,共24分)7.当x= ﹣1 时,二次根式取最小值,其最小值为 0 .【解答】解:根据二次根式有意义的条件,得x+1≥0,则x≥﹣1.所
4、以当x=﹣1时,该二次根式有最小值,即为0.故答案为:﹣1,0.8.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣6,0)、(0,8).以点A为圆心,以AB长为半径画弧,交x正半轴于点C,则点C的坐标为 (4,0) .【解答】解:∵点A,B的坐标分别为(﹣6,0)、(0,8),∴AO=6,BO=8,∴AB==10,∵以点A为圆心,以AB长为半径画弧,∴AB=AC=10,∴OC=AC﹣AO=4,∵交x正半轴于点C,∴点C的坐标为(4,0),故答案为:(4,0).9.已知是正整数,则实数n的最大值为 11 .【解答】解:由题意可知12﹣n是一个完全
5、平方数,且不为0,最小为1,所以n的最大值为12﹣1=11.10.若y=++1,求3x+y的值是 3 .【解答】解:由题意得,3x﹣2≥0且2﹣3x≥0,解得x≥且x≤,所以,x=,y=1,所以,3x+y=3×+1=2+1=3.故答案为:3.11.若代数式+(x﹣1)0在实数范围内有意义,则x的取值范围为 x≥﹣3且x≠1 .【解答】解:由题意得:x+3≥0,且x﹣1≠0,解得:x≥﹣3且x≠1.故答案为:x≥﹣3且x≠1.12.把a中根号外面的因式移到根号内的结果是 ﹣ .【解答】解:原式=﹣=﹣,故答案为:﹣X
6、k
7、B
8、1.c
9、O
10、m13.计算
11、的值是 4﹣1 .【解答】解:原式=﹣1+3=4﹣1.故答案为4﹣1.14.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是 10 .【解答】解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,于是S3=S1+S2,即S3=2+5+1+2=10.故答案是:10.三.解答题(共24分)15.计算:(1)﹣4+(2)+2﹣(﹣)(3)(2+)(2﹣);(4)+﹣(﹣1)0.【解答】解:(1)原式=3﹣2+=
12、2;(2)原式=2+2﹣3+=3﹣;(3)原式=12﹣6=6;(4)原式=+1+3﹣1=4.16.化简:•﹣(a≥0)【解答】解:原式=﹣5a=4a2﹣5a.17.已知a,b在数轴上位置如图,化简+﹣.【解答】解:由数轴可知a<0,a+b<0,a﹣b<0,原式=﹣(a+b)﹣(a﹣b)+a]=﹣a﹣b﹣a+b+a=﹣a.四.解答题(共24分)18.已知y=+2,求+﹣2的值.【解答】解:由二次根式有意义的条件可知:1﹣8x=0,解得:x=.当x=,y=2时,原式==﹣2=+4﹣2=2.19.已知x=+3,y=﹣3,求下列各式的值:(1)x2﹣2xy
13、+y2(2)x2﹣y2.【解答】解:(1)∵x=+3,y=﹣3,∴x﹣y=6,∴x2﹣2xy+y2=(x﹣y)2=62=3
此文档下载收益归作者所有