Higham Gaussian elimination

Higham Gaussian elimination

ID:40080868

大小:163.47 KB

页数:9页

时间:2019-07-20

Higham Gaussian elimination_第1页
Higham Gaussian elimination_第2页
Higham Gaussian elimination_第3页
Higham Gaussian elimination_第4页
Higham Gaussian elimination_第5页
资源描述:

《Higham Gaussian elimination》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、AdvancedReviewGaussianeliminationNicholasJ.Higham∗Asthestandardmethodforsolvingsystemsoflinearequations,Gaussianelimination(GE)isoneofthemostimportantandubiquitousnumericalalgorithms.However,itssuccessfulusereliesonunderstandingitsnumericalstabilitypropertiesandhowtoorganizei

2、tscomputationsforefficientexecutiononmoderncomputers.WegiveanoverviewofGE,rangingfromtheorytocomputation.WeexplainwhyGEcomputesanLUfactorizationandthevariousbenefitsofthismatrixfactorizationviewpoint.Pivotingstrategiesforensuringnumericalstabilityaredescribed.Specialpropertieso

3、fGEforcertainclassesofstructuredmatricesaresummarized.HowtoimplementGEinawaythatefficientlyexploitsthehierarchicalmemoriesofmoderncomputersisdiscussed.WealsodescribeblockLUfactorization,correspondingtotheuseofpivotblocksinsteadofpivotelements,andexplainhowiterativerefinementcan

4、beusedtoimproveasolutioncomputedbyGE.OthertopicsareGEforsparsematricesandtheroleGEplaysintheTOP500rankingoftheworld’sfastestcomputers.2011JohnWiley&Sons,Inc.WIREsCompStat20113230–238DOI:10.1002/wics.164INTRODUCTIONThenweturntothenumericalpropertiesofLUfac-torizationanddiscus

5、spivotingstrategiesforensuringaussianelimination(GE)isthestandardmethodnumericalstability.Inthesection‘StructuredMatri-Gforsolvingasystemoflinearequations.Assuch,ces’,wedescribesomespecialresultsthatholdforLUitisoneofthemostubiquitousnumericalalgorithmsfactorizationwhenthemat

6、rixhasparticularproper-andplaysafundamentalroleinscientificcomputation.ties.Computerimplementationisthendiscussed,asGEwasknowntotheancientChinese1andiswellasaversionofGEthatusesblockpivots.Iterativefamiliartomanyschoolchildrenastheintuitivelyrefinement—ameansforimprovingthequal

7、ityofanaturalmethodofeliminatingvariablesfromlinearcomputedsolution—isalsodescribed.equations.GaussuseditinthecontextofthelinearWewillneedthefollowingnotation.Theunitleastsquaresproblem.2–4Undergraduateslearntheroundoff(ormachineprecision)isdenotedbyu;inmethodinlinearalgebrac

8、ourses,whereitisusuallyIEEEdoubleprecisionarithmeticithasthevaluetau

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。