《四种命题的关系》ppt课件

《四种命题的关系》ppt课件

ID:40033335

大小:578.50 KB

页数:23页

时间:2019-07-18

《四种命题的关系》ppt课件_第1页
《四种命题的关系》ppt课件_第2页
《四种命题的关系》ppt课件_第3页
《四种命题的关系》ppt课件_第4页
《四种命题的关系》ppt课件_第5页
资源描述:

《《四种命题的关系》ppt课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.1.3四种命题的相互关系高二数学选修2-1第一章常用逻辑用语2008-12-087/24/2021回顾交换原命题的条件和结论,所得的命题是________同时否定原命题的条件和结论,所得的命题是________交换原命题的条件和结论,并且同时否定,所得的命题是__________逆命题。否命题。逆否命题。7/24/2021原命题,逆命题,否命题,逆否命题四种命题形式:原命题:逆命题:否命题:逆否命题:若p,则q若q,则p若┐p,则┐q若┐q,则┐p7/24/2021观察与思考?你能说出其中任意两个命题之间的关系吗?7/24/2

2、021课堂小结原命题若p则q逆命题若q则p否命题若﹁p则﹁q逆否命题若﹁q则﹁p互为逆否同真同假互为逆否同真同假互逆命题真假无关互逆命题真假无关互否命题真假无关互否命题真假无关7/24/20212)原命题:若a=0,则ab=0。逆命题:若ab=0,则a=0。否命题:若a≠0,则ab≠0。逆否命题:若ab≠0,则a≠0。(真)(假)(假)(真)(真)2.四种命题的真假看下面的例子:1)原命题:若x=2或x=3,则x2-5x+6=0。逆命题:若x2-5x+6=0,则x=2或x=3。否命题:若x≠2且x≠3,则x2-5x+6≠0。逆否命

3、题:若x2-5x+6≠0,则x≠2且x≠3。(真)(真)(真)3)原命题:若x∈A∪B,则x∈UA∪UB。逆命题:x∈UA∪UB,x∈A∪B。否命题:xA∪B,xUA∪UB。逆否命题:xUA∪UB,xA∪B。Help假假假假7/24/2021四种命题的真假,有且只有下面四种情况:原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假7/24/2021想一想?(2)若其逆命题为真,则其否命题一定为真。但其原命题、逆否命题不一定为真。由以上三例及总结我们能发现什么?即原命题与逆否命题同真假。原命题的逆命题与否命题同真假。(

4、1)原命题为真,则其逆否命题一定为真。但其逆命题、否命题不一定为真。(两个命题为互逆命题或互否命题,它们的真假性没有关系).几条结论:7/24/20211.判断下列说法是否正确。1)一个命题的逆命题为真,它的逆否命题不一定为真;(对)2)一个命题的否命题为真,它的逆命题一定为真。(对)2.四种命题真假的个数可能为()个。答:0个、2个、4个。如:原命题:若A∪B=A,则A∩B=φ。逆命题:若A∩B=φ,则A∪B=A。否命题:若A∪B≠A,则A∩B≠φ。逆否命题:若A∩B≠φ,则A∪B≠A。(假)(假)(假)(假)3)一个命题的原命

5、题为假,它的逆命题一定为假。(错)4)一个命题的逆否命题为假,它的否命题为假。(错)练一练7/24/2021练习:分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假。(1)若q<1,则方程有实根。(2)若ab=0,则a=0或b=0.(3)若或,则。(4)若,则x,y全为零。7/24/2021总结7/24/2021反证法:要证明某一结论A是正确的,但不直接证明,而是先去证明A的反面(非A)是错误的,从而断定A是正确的。即反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法。7/24/

6、2021反证法的步骤:假设命题的结论不成立,即假设结论的反面成立。从这个假设出发,通过推理论证,得出矛盾。由矛盾判定假设不正确,从而肯定命题的结论正确。推理过程中一定要用到才行显而易见的矛盾(如和已知条件矛盾).7/24/2021例证明:若p2+q2=2,则p+q≤2.将“若p2+q2=2,则p+q≤2”看成原命题。由于原命题和它的逆否命题具有相同的真假性,要证原命题为真命题,可以证明它的逆否命题为真命题。即证明为真命题7/24/2021假设原命题结论的反面成立看能否推出原命题条件的反面成立尝试成功得证例证明:若p2+q2=2,则

7、p+q≤2.7/24/2021变式练习1、已知。求证:这说明,原命题的逆否命题为真命题,从而原命题为真命题。解:假设p+q>2,那么q>2-p,根据幂函数的单调性,得即所以因此7/24/2021可能出现矛盾四种情况:与题设矛盾;与反设矛盾;与公理、定理矛盾;在证明过程中,推出自相矛盾的结论。7/24/2021这些条件都与已知矛盾所以原命题成立证明:假设不大于则或因为所以例用反证法证明:如果a>b>0,那么.7/24/2021练圆的两条不是直径的相交弦不能互相平分。已知:如图,在⊙O中,弦AB、CD交于P,且AB、CD不是直径.求证

8、:弦AB、CD不被P平分.证明:假设弦AB、CD被P平分,∵P点一定不是圆心O,连接OP,根据垂径定理的推论,有OP⊥AB,OP⊥CD即过点P有两条直线与OP都垂直,这与垂线性质矛盾,∴弦AB、CD不被P平分。7/24/2021若a2能被2整除,a

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。