【初数】几何专题课程共9讲第07讲正方形与弦图-5月6日-周三-10点15-黄欣欣

【初数】几何专题课程共9讲第07讲正方形与弦图-5月6日-周三-10点15-黄欣欣

ID:40003427

大小:815.47 KB

页数:17页

时间:2019-07-17

【初数】几何专题课程共9讲第07讲正方形与弦图-5月6日-周三-10点15-黄欣欣_第1页
【初数】几何专题课程共9讲第07讲正方形与弦图-5月6日-周三-10点15-黄欣欣_第2页
【初数】几何专题课程共9讲第07讲正方形与弦图-5月6日-周三-10点15-黄欣欣_第3页
【初数】几何专题课程共9讲第07讲正方形与弦图-5月6日-周三-10点15-黄欣欣_第4页
【初数】几何专题课程共9讲第07讲正方形与弦图-5月6日-周三-10点15-黄欣欣_第5页
资源描述:

《【初数】几何专题课程共9讲第07讲正方形与弦图-5月6日-周三-10点15-黄欣欣》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、实用文档第七讲:正方形与弦图知识点睛一、正方形的弦图早在一千三百多年前,我国著名的数学家赵爽巧妙的借助面积,证明了勾股定理,下图(左)就是赵爽证题时用到的图形,史称“弦图”;此图不仅构造巧妙美观,而且还蕴含着不少“玄机”:FGHABDECOPRQ易知△AEF、△RFE、△DFG、△OGF、△BHE、△QEH、△PHG、△CGH都全等.其中我们把正方形的弦图分为内弦图和外弦图(见下图).通常情况下,弦图中垂直往往对应着全等,由全等得出对应边相等,对应角相等.由三角形全等,可知他们的面积相等,设它们的面积都为a,则,,于是可得出如下结

2、论:正方形的弦图可以推广延伸到矩形和平行四边形中去,见(右)图:易知文案大全实用文档FGHABDECOPRQ文案大全实用文档例题精讲【例1】正方形ABCD中,点P是CD上一动点,连接AP,分别过B、D两点作BE⊥AP,DF⊥AP,垂足为E、F,如图①(1)请你通过观察或测量BE、DF、EF的长度,然后猜想它们之间的数量关系.若点P在DC的延长线上,如图②,这三条线段长度之间又具有什么样的数量关系?若P在DC的反向延长线上,如图③,这三条线段长度之间又具有什么样的数量关系;请分别直接写出结论.(2)请在(1)中的三个结论中任意选择一

3、个加以证明.文案大全实用文档【例1】如图所示,四边形EFGH是由矩形ABCD的外角平分线围成的.求证:四边形EFGH是正方形.【例2】如图,E是BC上的一点,,且Rt△ABE≌Rt△ECD.(1)求证:△AED是等腰直角三角形;(2)若△AED的面积是,△ABE的面积是6,求△ABE的周长.文案大全实用文档文案大全实用文档【例1】如图,已知点E、F、G、H分别在正方形ABCD的各边上,且,AF、BG、CH、DE分别相交于点、、、.求证:四边形是正方形.【例2】如图,有4个动点P、Q、E、F分别从正方形ABCD的4个顶点出发,沿着A

4、B、BC、CD、DA以同样的速度向B、C、D、A各点移动.(1)判定四边形PQEF的形状;(2)PE是否总是经过某一定点,并说明理由;(3)四边形PQEF的顶点位于何处时,其面积最小、最大?各是多少?文案大全实用文档文案大全实用文档【例1】如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是线段BC上一点,以AE为边在直线MN的上方作正方形AEFG(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,求证:,并说明理由;(3)当E点在CB的延长线上时,如图(2),连接FC,则∠FCN等于多少度?请说明理由.文

5、案大全实用文档【例1】(1)如图(1)正方形ABCD中,AE⊥BF于点G,试说明.(2)如果把线段BF变动位置如图(2),其余条件不变,(1)中结论还成立吗?请说明理由.(3)如果把AE与BF变动位置如图(3),结论还成立吗?请说明理由.文案大全实用文档【例1】(2009•威海)如图1,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,,连接EG,FH,交点为O.(1)如图2,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;(2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边

6、形按图3的方式拼接成一个四边形.若正方形ABCD的边长为3cm,cm,则图3中阴影部分的面积为_______cm2.文案大全实用文档【例1】(1)已知△ABC是等腰直角三角形,现分别以它的直角边BC、斜边AB为边向外作正方形BCEF、ABMN,如图甲,连接MF,延长CB交MF于D.试观测DF与DM的长度关系,你会发现__________(2)如果将(1)中的△ABC改为非等腰的直角三角形,其余作法不变,如图乙,这时D点还具有(1)的结论吗?请证明你的判断.(3)如果将(1)中的△ABC改为锐角三角形,仍以其中的两边分别向外作正方形

7、,如图丙,则应在图中过B点作△ABC的______线,它与MF的交点D恰好也具有(1)的结论.请证明在你的作法下结论的正确性.文案大全实用文档【例1】如图1,在△ABC和△ADE中,,,.(1)求证:;(2)如图2,AM是△ACE的中线,MA的延长线交BD于N,求证:MN⊥BD.文案大全实用文档【例1】(2005•河北)操作示例:对于边长为a的两个正方形ABCD和EFGH,按图1所示的方式摆放,在沿虚线BD,EG剪开后,可以按图中所示的移动方式拼接为图1中的四边形BNED.从拼接的过程容易得到结论:①四边形BNED是正方形;②.实

8、践与探究:(1)对于边长分别为a,b()的两个正方形ABCD和EFGH,按图2所示的方式摆放,连接DE,过点D作DM⊥DE,交AB于点M,过点M作MN⊥DM,过点E作EN⊥DE,MN与EN相交于点N;①证明四边形MNED是正方形,并用含a,b的代数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。