2.3 垂径定理

2.3 垂径定理

ID:39933511

大小:1012.50 KB

页数:30页

时间:2019-07-15

2.3 垂径定理_第1页
2.3 垂径定理_第2页
2.3 垂径定理_第3页
2.3 垂径定理_第4页
2.3 垂径定理_第5页
资源描述:

《2.3 垂径定理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.3垂径定理第2章圆优翼课件导入新课讲授新课当堂练习课堂小结学练优九年级数学下(XJ)教学课件学习目标1.进一步认识圆,了解圆的对称性.2.理解垂直于弦的直径的性质和推论,并能应用它解决一些简单的计算、证明和作图问题.(重点)3.灵活运用垂径定理解决有关圆的问题.(难点)导入新课问题引入问题1圆是轴对称图形吗?问题2它的对称轴是什么?你能找到多少条对称轴?圆是轴对称图形其对称轴是直径所在的直线无数条问题3你知道赵州桥吗?它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37m,拱高(弧的中点到弦的距离)为7.23m,你能求出赵州桥主桥拱的半径吗

2、?导入新课讲授新课垂径定理及其推论一做一做:剪一个圆形纸片,在圆形纸片上任意画一条垂直于直径CD的弦AB,垂足为P,再将纸片沿着直径CD对折,比较AP与PB,AC与CB,你能发现什么结论?⌒⌒·OABDP互动探究C线段:AP=BP弧:AC=BC,AD=BD⌒⌒⌒⌒理由如下:把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A与点B重合,AP与BP重合,AC和BC,AD与BD重合.⌒⌒⌒⌒·OABDPC想一想:能不能用所学过的知识证明你的结论?·OABDCP试一试已知:在☉O中,CD是直径,AB是弦,AB⊥CD,垂足为P.求证:AP=BP,AC

3、=BC,⌒⌒⌒⌒AD=BD.证明:连接OA、OB、CA、CB,则OA=OB.即△AOB是等腰三角形.∵AB⊥CD,∴AP=BP,⌒⌒AC=BC.∴AD=BD,⌒⌒∠AOC=∠BOC.从而∠AOD=∠BOD.垂径定理·OABCDP垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.∵CD是直径,CD⊥AB,(条件)∴AP=BP,⌒⌒AC=BC,⌒⌒AD=BD.(结论)归纳总结推导格式:温馨提示:垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.下列图形是否具备垂径定理的条件?如果不是,请说明为什么?是不是,因为没有垂直

4、是不是,因为CD没有过圆心ABOCDEOABCABOEABDCOE议一议垂径定理的几个基本图形:ABOCDEABOEDABODCABOC例1证明:圆的两条平行弦所夹的弧相等.已知:如图,⊙O中弦AB∥CD,求证:AC=BD.证明:作直径MN⊥AB.∵AB∥CD,∴MN⊥CD.则AM=BM,CM=DMAM-CM=BM-DM∴AC=BD⌒⌒.MCDABON⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒典例精析例2如图,☉O的弦AB=8cm,直径CE⊥AB于D,DC=2cm,求半径OC的长.·OABECD解:连接OA,∵CE⊥AB于D,∴设OC=xcm,则OD=x-2,根据

5、勾股定理,得解得x=5,即半径OC的长为5cm.x2=42+(x-2)2,如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换一条,命题是真命题吗?①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。上述五个条件中的任何两个条件都可以推出其他三个结论吗?思考探索:·OABDCP已知:在☉O中,CD是直径,AB是弦(不是直径),与CD交于点P,且P是AB的中点.求证:AB⊥CD,⌒⌒AC=BC,⌒⌒AD=BD.试一试证明:连接OA、OB、CA、CB,则OA=OB.即△AOB是等腰三角形.∵P是AB的中

6、点,∴AB⊥CD.即AP=BP,∵CD是直径,CD⊥AB,∴⌒⌒AC=BC,⌒⌒AD=BD.思考:“不是直径”这个条件能去掉吗?如果不能,请举出反例.平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两条弧.垂径定理的推论·OABCD特别说明:圆的两条直径是互相平分的.归纳总结垂径定理的本质是:满足其中任两条,必定同时满足另三条(1)一条直线过圆心(2)这条直线垂直于弦(3)这条直线平分不是直径的弦(4)这条直线平分不是直径的弦所对的优弧(5)这条直线平分不是直径的弦所对的劣弧例3如图,在⊙O中,点C是AB的中点,弦AB与半径OC相交

7、于点D,AB=12,CD=2.求的⊙O半径.典例精析解:连接AO,∵点C是AB的中点,半径OC与AB相交于点D,∴OC⊥AB,∵AB=12,∴AD=BD=6,设⊙O的半径为R,∵CD=2,∴在Rt△AOD中,由勾股定理得:AO2=OD2+AD2,即:R2=(R-2)2+62,∴R=10即,⊙O的半径为10.你能利用垂径定理解决求赵州桥主桥拱半径的问题吗?试一试垂径定理的实际应用二ABOCD解:如图,用AB表示主桥拱,设AB所在圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC垂足为D,与弧AB交于点C,则D是AB的中点,C是弧AB的中点,C

8、D就是拱高.∴AB=37m,CD=7.23m.∴AD=AB=18.5m,OD=OC-CD=R-7.23.解得R≈27.3(m).即主桥拱半径约为27.3m.R2=1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。