资源描述:
《DEVELOPMENT OF A STATISTICAL BIAS CORRECTION METHOD FOR DAILY PRECIPITATION DATA OF GCM20》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、AnnualJournalofHydraulicEngineering,JSCE,Vol.**,20**,FebruaryDEVELOPMENTOFASTATISTICALBIASCORRECTIONMETHODFORDAILYPRECIPITATIONDATAOFGCM20HironoriINOMATA1,KuniyoshiTAKEUCHI2andKazuhikoFUKAMI31MemberofJSCE,MasterofEng.,Researcher,InternationalCentreforWaterHazardandRiskManagement,PublicW
2、orksResearchInstitute(1-6,Minamihara,Tsukuba,Ibaraki,Japan)2MemberofJSCE,Doctor.of.Eng.,Director,InternationalCentreforWaterHazardandRiskManagement,PublicWorksResearchInstitute(1-6,Minamihara,Tsukuba,Ibaraki,Japan)3MemberofJSCE,MasterofEng.,Researcher,InternationalCentreforWaterHazardan
3、dRiskManagement,PublicWorksResearchInstitute(1-6,Minamihara,Tsukuba,Ibaraki,Japan)Inthisstudy,asimplestatisticalmethodisdevelopedtocorrectbiasintheprecipitationsimulatedbyGCM20,anatmosphericgeneralcirculationmodelwith20kmspatialresolutiondevelopedbytheMeteorologicalResearchInstitute.The
4、methodprimarilyaimstocorrectintensityofGCM20dailyprecipitationsamplestoexpressbothseasonalpatternsandextremevaluesappropriately.ThebasicideaofthebiascorrectionistoadjusttheprobabilitydistributionofGCM20dailyprecipitationtothatofitsobservedcounterparts.Toexaminethecorrectionperformanceth
5、eproposedmethodisappliedtotheYoshinoRiverbasininJapan.TheresultsshowthatitappropriatelycorrectstheGCM20biasinbothmonthlyandextremedailyprecipitation.KeyWords:clmatechange,generalcirculationmodel,biascorrection,precipitation1.INTRODUCTION(GCM20).Themodeloutputishighlyexpectedtoserveforim
6、provingfloodimpactassessment.TheIntergovernmentalPanelonClimateHowever,comparingGCM20precipitationoutputChange(IPCC)reportedthatintensityandwithgroundobservationintheYoshinoRiverbasin4)frequencyofheavyprecipitationwillincreaseveryinJapan,Inomataetal.foundthattheGCM20likelyunderclimatech
7、ange1).Thissuggeststhatoutputexhibitsunderestimationespeciallyinheavythereisthehighpossibilitythatfrequencyandprecipitationinwetseasonandshowsdiscrepanciesmagnitudeofflooddisasterswillalsoincrease.Itisinseasonalpatternssuchasmonthlyprecipitationanurgentmatterthataquantitativeas