欢迎来到天天文库
浏览记录
ID:39778842
大小:90.50 KB
页数:4页
时间:2019-07-11
《数学北师大版八年级上册2.6.1实数(一) 学案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、2.6实数三联永恒学校王建华八(1)班2015年9月23日教学目标:1.了解实数的意义,能对实数按要求进行分类;了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小.2.了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.3.在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想。4.在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法。教学重点1.了解实数意义,能对实数进行分类;2.
2、在实数范围求相反数、倒数和绝对值、明确实数的运算运算规律;3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。教学难点利用数轴上的点表示无理数第一环节:复习引入新课内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗?第二环节:实数概念和分类内容1:把下列各数分别填入相应的集合内:,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)…有理数集合…无理数集合知识整理:有理数和无理数统称为实数。内容2:1.你能把上面各数分别填入下面相应的集合内吗?…正数集合…
3、负数集合2.0属于正数吗?0属于负数吗?知识整理:无理数和有理数一样,也有正负之分。1.从符号考虑,实数可以分为正实数、0、负实数,即:2.另外从实数的概念也可以进行如下分类:第三环节:实数的相关概念内容1:1.在有理数中,数a的相反数是什么?绝对值是什么?当a不为0时,它的倒数是什么?2.的相反数是什么?的倒数是什么?,0,—π的绝对值分别是什么?内容2:想一想:1.3—π的绝对值是。2.想一想:a是一个实数,它的相反数是,它的绝对值是,当a≠0时,它的倒数是。知识整理(1)相反数:a与—a互为相反数;0的相反数仍是0;(2)倒数:当a
4、≠0时,a与互为倒数(0没有倒数);(3)绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;即:第四环节:实数运算内容:1.在有理数范围内,能进行哪些运算?(加、减、乘、除、乘方),用哪些运算律?2.判断下列各式成立吗?第五环节:探究——实数与数轴上点之间的对应关系内容1:如图所示,认真观察,探讨下列问题:012-1-2AB议一议:(1)如图,OA=OB,数轴上A点对应的数表示什么?它介于哪两个整数之间?(2)如果将所有有理数都标到数轴上,那么数轴被填满了吗?知识整理(1)每一个实数都可以用数轴上的一个点来表示;反过
5、来,数轴上的每一个点都表示一个实数,即实数与数轴上的点是一一对应的;(2)在数轴上,右边的点表示的数总比左边的点表示的数大。第六环节:课堂练习内容:1.判断下列说法是否正确:(1)无限小数都是无理数;()(2)无理数都是无限小数;()(3)带根号的数都是无理数。()2.求下列各数的相反数、倒数和绝对值:(1);(2);(3).3.在数轴上作出对应的点。第七环节:归纳小结内容:议一议,本节课我们学习了哪些知识?第八环节:课堂小测一、判断:1.实数不是有理数就是无理数。()2.无理数都是无限不循环小数。()3.无理数都是无限小数。()4.带根
6、号的数都是无理数。()5.无理数一定都带根号。()6.两个无理数之积不一定是无理数。()7.两个无理数之和一定是无理数。()8.数轴上的任何一点都可以表示实数。()二,填空:1、正实数的绝对值是,0的绝对值是,负实数的绝对值是 2、的相反数是,绝对值是.3、绝对值等于的数是,的平方是4、比较大小:-7 5、在实数中,整数有有理数有无理数有实数有 .附:板书设计6.实数(一)一、实数定义二、实数分类:或三、实数的相关概念与运算:相反数倒数绝对值运算四、实数和数轴上的点一一对应
此文档下载收益归作者所有