欢迎来到天天文库
浏览记录
ID:39757639
大小:562.10 KB
页数:42页
时间:2019-07-11
《《高数微分方程》PPT课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、新的一年新的开始,愿同学们新的一年里学习进步!微积分学好《微积分》下的要求1)抽空阅读上册单变量函数微积分学部分基础知识;2)认真听讲和完成作业。将知识传授给你们是我的责任,能否领悟要靠你们的努力!班分数3030304030503060比例0050101010201030合计比例90-10086121127.41%6155133927.86%80-891416121844.44%151114175841.43%70-79855517.04%1081343624.29%60-6953016.7%3220235.00%0-5922024.4%0011231.43%人数373229371353
2、4363535140平均79.73479.94386.03182.89282.1581。29385.25179。91485。17282.91%微分方程解法(续)一、什么是微分方程?凡含有未知函数的导数或微分的方程叫微分方程.微分方程常微分方程:未知函数为一元函数偏微分方程:未知函数为多元函数例如:是常微分方程;是偏微分方程。二、常见一阶常微分方程解法1、可分离变量的微分方程解法:分离变量然后求不定积分例求解微分方程解分离变量后得到两端不定积分2、齐次方程解法:做变量替换后化为可分离变量方程求解代入方程得到例求解微分方程解微分方程的解为3、一阶线性方程一阶线性微分方程的标准形式:方程的通解
3、为:解例1伯努利(Bernoulli)方程的标准形式4、伯努利方程方程为线性微分方程.方程为非线性微分方程.解法:两边同除以后化为一阶线性方程求解。例求微分方程的通解解所求通解为5、可降阶的高阶微分方程…解法:(1)(2)型(不显含变量y)解法(3)解法:代入方程得解代入原方程得例4§4.4高阶线性微分方程一、线性微分方程的解的结构二、二阶常系数齐次方程的解法二阶线性微分方程二阶线性齐次微分方程。二阶线性非齐次微分方程;n阶线性微分方程一、线性微分方程的解的结构1.二阶齐次方程解的结构:问题:(自己思考证明)例如线性无关线性相关特别地:例如(自己证明)2.二阶非齐次线性方程的解的结构:同
4、学们可以自己证明定理4设y1与y2是二阶非齐次方程的两个解,则y1-y2是对应齐次方程的解.自己证明解的叠加原理自己思考容易证明二、二阶常系数齐次方程的解法定义:n阶常系数线性微分方程的标准形式二阶常系数齐次线性方程的标准形式二阶常系数非齐次线性方程的标准形式将其代入上方程,得故有特征根特征方程法特征方程(1)有两个不相等的实根两个线性无关的特解得齐次方程的通解为特征根为(2)有两个相等的实根一特解为得齐次方程的通解为特征根为(3)有一对共轭复根重新组合得齐次方程的通解为特征根为结论解特征方程为解得故所求通解为例1解特征方程为解得故所求通解为例2例3求下列微分方程的通解特征方程为三、n阶
5、常系数齐次线性方程解法给出2k项给出k项给出二项(2)一对单复根给出一项Cerx(1)单实根r通解中的对应项特征方程的根特征根为故所求通解为解特征方程为例4二重复根例5求微分方程例6求微分方程解其特征方程为二重复根
此文档下载收益归作者所有