《认识无理数》 教学设计

《认识无理数》 教学设计

ID:39757296

大小:74.13 KB

页数:3页

时间:2019-07-10

《认识无理数》 教学设计_第1页
《认识无理数》 教学设计_第2页
《认识无理数》 教学设计_第3页
资源描述:

《《认识无理数》 教学设计》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、《认识无理数》教学设计平山乡后山小学:陶旭教学目标:(一)知识目标:1、通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性。2、能判断给出的数是否为有理数;并能说出理由。(二)能力训练目标:1、让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养学生的动手能力和合作精神。2、通过回顾有理数的有关知识,让学生能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力。(三)情感与价值观目标:1、激励学生积极参与教学活动,提高学习数学的热情。2、引导学生充分进行交流、讨论与探索等教学活动,培养他们合作与钻研精神。3、了解有关无理数发现

2、的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神。教学重点:1、让学生经历无理数发现的过程。感知生活中确实存在着不同于有理数的数。2、会判断一个数是否为有理数。教学难点:1、把两个边长为1的正方形拼成一个大正方形的动手操作过程。2、判断一个数是否为有理数。教学过程:(一)创设情境,导入新课:讲故事:(播放课件)早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,他认为在生活中还存

3、在除有理数之外的另一种数。[师]到底谁的观点正确呢?我们以前学的有理数范围是否能满足我们实际生活的需要呢?这节课我们就共同来研究这个问题。(板书课题)学生认真听故事。做好学前准备。(本环节设计意图:以故事引入新课首先能激起学生的学习兴趣,同时让学生带着问题听讲新课会收到良好的效果。)(二)操作观察,总结归纳:1、分组活动:[师]请学生拿出课前准备好的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形。学生分小组讨论,组长带领组员动手剪、拼。各小组组长展示自己的操作成果(利用投影仪)教师演示拼图过程(播放课件)2、探索新知[师]a2=2中a是

4、整数吗?是分数吗?[甲生]因为12=1,22=4所以a应在1和2之间,故a不能是整数。[乙生]因为两个相同因数的乘积都为分数,所以a不可能是分数。[师]同学们说的都不错,我们可以来回顾一下前面学过的有理数的范围。[生]有理数包括整数、分数。[师]经过我们刚才的分析可知,在a2=2中,a既不是整数,也不是分数,所以a不是有理数,但在现实生活中确实存在像a这样的数。看来我们学的有理数的范围又不够用了。3、做一做:(播放课件)(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)正方形的边长为b,则b应满足什么条件?b是有理数吗?[师]我们先来回顾一下勾

5、股定理的内容。[生]在直角三角形中,若两条直角边长为a,b,斜边为c,则有a2+b2=c2。[师]在这题中,根据勾股定理得b2=12+22,即b2=5,则b是有理数吗?[甲生]因为22=4,32=9,所以b不可能是整数。[乙生]没有两个相同的分数相乘得5,所以b不可能是分数。[丙生]因为没有一个整数或分数的平方为5,所以b不可能有理数。[师]同学们说的很正确,生活中确实存在不同于有理数的数,它就是——无理数。下面我们继续看课前播放的故事。(播放课件)希伯索斯当时的发现动摇了毕达哥拉斯学派的信条,他们试图封锁这一发现,然而希伯索斯早己将这个发现偷偷传播出去了。可

6、是后来还是被毕氏围捕,投进了大海,从而献出了宝贵的生命。但真理是不可战胜的,后来古希腊人证实了希伯索斯的发现。[师]我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神。(本环节设计意图:让学生分组讨论、合作、交流,培养了学生新的学习方法,加强了学生团结、协作的能力。了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神。)(三)巩固练习,深化认识:1、如图,正三角形ABC的边长为2,

7、高为h,h可能是整数吗?可能是分数吗?[师]找两生板演,其余在练习本上完成。[生]由正三角形的性质可知BD=1,在Rt△ABD中,由勾股定理得h2=3。h不可能是整数,也不可能是分数。2、为了加固一个高2米、宽1米的大门,需要在对角线位置加固一条木板,设木板长为a米,则由勾股定理得a2=12+22,即a2=5,a的值大约是多少?这个值可能是分数吗?[生]a的值大约是2.2,这个值不可能是分数。师总结,同时了解其余学生的做题情况。(本环节设计意图:练习的目的既是检查又是巩固、深化,帮助学生对本节课所学的知识形成更为清晰和深刻的认识,同时可以让学生在探索与被肯定当

8、中获得积极的情感体验。)(四)课堂小结

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。