Minimization of quadratic function_12.2

Minimization of quadratic function_12.2

ID:39748365

大小:102.36 KB

页数:9页

时间:2019-07-10

Minimization of quadratic function_12.2_第1页
Minimization of quadratic function_12.2_第2页
Minimization of quadratic function_12.2_第3页
Minimization of quadratic function_12.2_第4页
Minimization of quadratic function_12.2_第5页
资源描述:

《Minimization of quadratic function_12.2》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、NumericalAnalysisLectureNotesPeterJ.Olver12.MinimizationInthispart,wewillintroduceandsolvethemostbasicmathematicaloptimizationproblem:minimizeaquadraticfunctiondependingonseveralvariables.Thiswillrequireashortintroductiontopositivedefinitematrices.Assumingthecoefficientmatrixofthequadratictermsisp

2、ositivedefinite,theminimizercanbefoundbysolvinganassociatedlinearalgebraicsystem.Withthesolutioninhand,weareabletotreatawiderangeofapplications,includingleastsquaresfittingofdata,interpolation,aswellasthefiniteelementmethodforsolvilngboundaryvalueproblemsfordifferentialequations.12.1.PositiveDefinit

3、eMatrices.Minimizationoffunctionsofseveralvariablesreliesonanextremelyimportantclassofsymmetricmatrices.Definition12.1.Ann×nmatrixKiscalledpositivedefiniteifitissymmetric,KT=K,andsatisfiesthepositivityconditionxTKx>0forallvectors06=x∈Rn.(12.1)WewillsometimeswriteK>0tomeanthatKisasymmetric,positive

4、definitematrix.Warning:TheconditionK>0doesnotmeanthatalltheentriesofKarepositive.Therearemanypositivedefinitematricesthathavesomenegativeentries;seeExample12.2below.Conversely,manysymmetricmatriceswithallpositiveentriesarenotpositivedefinite!Remark:Althoughsomeauthorsallownon-symmetricmatricestobe

5、designatedaspositivedefinite,wewillonlysaythatamatrixispositivedefinitewhenitissymmetric.But,tounderscoreourconventionandremindthecasualreader,wewilloftenincludethesuperfluousadjective“symmetric”whenspeakingofpositivedefinitematrices.GivenanysymmetricmatrixK,thehomogeneousquadraticpolynomialXnq(x)=

6、xTKx=kxx,(12.2)ijiji,j=15/18/08210c2008PeterJ.OlverisknownasaquadraticformonRn.Thequadraticformiscalledpositivedefiniteifq(x)>0forall06=x∈Rn.(12.3)Thus,aquadraticformispositivedefiniteifandonlyifitscoefficientmatrixis.4−2Example12.2.EventhoughthesymmetricmatrixK=hastwo−23negativeentries,itis,neve

7、rtheless,apositivedefinitematrix.Indeed,thecorrespondingquadraticformq(x)=xTKx=4x2−4xx+3x2=(2x−x)2+2x2≥01122122isasumoftwonon-negativequantities.Moreover,q(x)=0ifandonlyifboth2x1−x2=0andx2=0,whichimpliesx1=0also.Thisprovesq(x)>0for

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。