linear quadratic dynamic programming

linear quadratic dynamic programming

ID:7303591

大小:279.39 KB

页数:32页

时间:2018-02-11

linear quadratic dynamic programming_第1页
linear quadratic dynamic programming_第2页
linear quadratic dynamic programming_第3页
linear quadratic dynamic programming_第4页
linear quadratic dynamic programming_第5页
资源描述:

《linear quadratic dynamic programming》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、Chapter5LinearQuadraticDynamicProgramming5.1.IntroductionThischapterdescribestheclassofdynamicprogrammingproblemsinwhichthereturnfunctionisquadraticandthetransitionfunctionislinear.Thisspecificationleadstothewidelyusedoptimallinearregulatorproblem,forwhichtheBellm

2、anequationcanbesolvedquicklyusinglinearalgebra.Weconsiderthespecialcaseinwhichthereturnfunctionandtransitionfunctionarebothtimeinvariant,thoughthemathematicsisalmostidenticalwhentheyarepermittedtobedeterministicfunctionsoftime.Linearquadraticdynamicprogramminghas

3、twousesforus.Afirstistostudyoptimumandequilibriumproblemsarisingforlinearrationalexpectationsmodels.Herethedynamicdecisionproblemsnaturallytaketheformofanoptimallinearregulator.Asecondistousealinearquadraticdynamicprogramtoapproximateonethatisnotlinearquadratic.La

4、terinthechapter,wetellhowtheKalmanfilteringproblemfromchap-ter2relatestothelinear-quadraticdynamicprogrammingproblem.Suitablyreinterpreted,formulasthatsolvetheoptimallinearregulatoraretheKalmanfilter.–127–128LinearQuadraticDynamicProgramming5.2.Theoptimallinearregu

5、latorproblemTheundiscountedoptimallinearregulatorproblemistomaximizeoverchoiceof{u}∞thecriteriontt=0∞−{xtRxt+utQut},(5.2.1)t=0subjecttoxt+1=Axt+But,x0given.Herextisan(n×1)vectorofstatevariables,utisa(k×1)vectorofcontrols,Risapositivesemidefinitesymmetricmatrix,

6、Qisapositivedefinitesymmetricmatrix,Aisan(n×n)matrix,andBisan(n×k)matrix.Weguessthatthevaluefunctionisquadratic,V(x)=−xPx,wherePisapositivesemidefinitesymmetricmatrix.Usingthetransitionlawtoeliminatenextperiod’sstate,theBellmanequa-tionbecomes−xPx=max{−xRx−uQu−

7、(Ax+Bu)P(Ax+Bu)}.(5.2.2)uThefirst-ordernecessaryconditionforthemaximumproblemontherightsideofequation(5.2.2)is1(Q+BPB)u=−BPAx,(5.2.3)whichimpliesthefeedbackruleforu:−1u=−(Q+BPB)BPAx(5.2.4)oru=−Fx,where−1F=(Q+BPB)BPA.(5.2.5)Substitutingtheoptimizer(5.2.4)int

8、otherightsideofequation(5.2.2)andrearranginggivesPA−APB(Q+BPB)−1BPA.(5.2.6)P=R+AEquation(5.2.6)iscalledthealgebraicmatrixRiccatiequation.Itexpressesthematr

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。