时间序列分析--第三章平稳时间序列分析

时间序列分析--第三章平稳时间序列分析

ID:39719770

大小:538.00 KB

页数:153页

时间:2019-07-10

时间序列分析--第三章平稳时间序列分析_第1页
时间序列分析--第三章平稳时间序列分析_第2页
时间序列分析--第三章平稳时间序列分析_第3页
时间序列分析--第三章平稳时间序列分析_第4页
时间序列分析--第三章平稳时间序列分析_第5页
资源描述:

《时间序列分析--第三章平稳时间序列分析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第三章平稳时间序列分析2021/7/241课件本章结构方法性工具ARMA模型平稳序列建模序列预测2021/7/242课件3.1方法性工具差分运算延迟算子线性差分方程2021/7/243课件差分运算一阶差分阶差分步差分2021/7/244课件延迟算子延迟算子类似于一个时间指针,当前序列值乘以一个延迟算子,就相当于把当前序列值的时间向过去拨了一个时刻记B为延迟算子,有2021/7/245课件延迟算子的性质,其中2021/7/246课件用延迟算子表示差分运算阶差分步差分2021/7/247课件线性差分方程线性差分方程齐次线性差分方程2021/7/248课件齐次线性差分方程的

2、解特征方程特征方程的根称为特征根,记作齐次线性差分方程的通解不相等实数根场合有相等实根场合复根场合2021/7/249课件非齐次线性差分方程的解非齐次线性差分方程的特解使得非齐次线性差分方程成立的任意一个解非齐次线性差分方程的通解齐次线性差分方程的通解和非齐次线性差分方程的特解之和2021/7/2410课件3.2ARMA模型的性质AR模型(AutoRegressionModel)MA模型(MovingAverageModel)ARMA模型(AutoRegressionMovingAveragemodel)2021/7/2411课件AR模型的定义具有如下结构的模型称为阶

3、自回归模型,简记为特别当时,称为中心化模型2021/7/2412课件AR(P)序列中心化变换称为的中心化序列,令2021/7/2413课件自回归系数多项式引进延迟算子,中心化模型又可以简记为自回归系数多项式2021/7/2414课件AR模型平稳性判别判别原因AR模型是常用的平稳序列的拟合模型之一,但并非所有的AR模型都是平稳的判别方法单位根判别法平稳域判别法2021/7/2415课件例3.1:考察如下四个模型的平稳性2021/7/2416课件例3.1平稳序列时序图2021/7/2417课件例3.1非平稳序列时序图2021/7/2418课件AR模型平稳性判别方法特征根判

4、别AR(p)模型平稳的充要条件是它的p个特征根都在单位圆内根据特征根和自回归系数多项式的根成倒数的性质,等价判别条件是该模型的自回归系数多项式的根都在单位圆外平稳域判别平稳域2021/7/2419课件AR(1)模型平稳条件特征根平稳域2021/7/2420课件AR(2)模型平稳条件特征根平稳域2021/7/2421课件例3.1平稳性判别模型特征根判别平稳域判别结论(1)平稳(2)非平稳(3)平稳(4)非平稳2021/7/2422课件平稳AR模型的统计性质均值方差协方差自相关系数偏自相关系数2021/7/2423课件均值如果AR(p)模型满足平稳性条件,则有根据平稳序列

5、均值为常数,且为白噪声序列,有推导出2021/7/2424课件Green函数定义AR模型的传递形式其中系数称为Green函数2021/7/2425课件Green函数递推公式原理方法待定系数法递推公式2021/7/2426课件方差平稳AR模型的传递形式两边求方差得2021/7/2427课件例3.2:求平稳AR(1)模型的方差平稳AR(1)模型的传递形式为Green函数为平稳AR(1)模型的方差2021/7/2428课件协方差函数在平稳AR(p)模型两边同乘,再求期望根据得协方差函数的递推公式2021/7/2429课件例3.3:求平稳AR(1)模型的协方差递推公式平稳AR

6、(1)模型的方差为协方差函数的递推公式为2021/7/2430课件例3.4:求平稳AR(2)模型的协方差平稳AR(2)模型的协方差函数递推公式为2021/7/2431课件自相关系数自相关系数的定义平稳AR(P)模型的自相关系数递推公式2021/7/2432课件常用AR模型自相关系数递推公式AR(1)模型AR(2)模型2021/7/2433课件AR模型自相关系数的性质拖尾性呈复指数衰减2021/7/2434课件例3.5:考察如下AR模型的自相关图2021/7/2435课件例3.5—自相关系数按复指数单调收敛到零2021/7/2436课件例3.5:—2021/7/2437

7、课件例3.5:—自相关系数呈现出“伪周期”性2021/7/2438课件例3.5:—自相关系数不规则衰减2021/7/2439课件偏自相关系数定义对于平稳AR(p)序列,所谓滞后k偏自相关系数就是指在给定中间k-1个随机变量的条件下,或者说,在剔除了中间k-1个随机变量的干扰之后,对影响的相关度量。用数学语言描述就是2021/7/2440课件偏自相关系数的计算滞后k偏自相关系数实际上就等于k阶自回归模型第个k回归系数的值。2021/7/2441课件偏自相关系数的截尾性AR(p)模型偏自相关系数P阶截尾2021/7/2442课件例3.5续:考察如下AR模

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。