On-line Optimization of Sequential Monte Carlo Methods

On-line Optimization of Sequential Monte Carlo Methods

ID:39719062

大小:437.46 KB

页数:6页

时间:2019-07-10

On-line Optimization of Sequential Monte Carlo Methods_第1页
On-line Optimization of Sequential Monte Carlo Methods_第2页
On-line Optimization of Sequential Monte Carlo Methods_第3页
On-line Optimization of Sequential Monte Carlo Methods_第4页
On-line Optimization of Sequential Monte Carlo Methods_第5页
资源描述:

《On-line Optimization of Sequential Monte Carlo Methods》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ProceedingsoftheAmericanControlConferenceAnchorage,AKMay8-10.2002On-lineOptimizationofSequentialMonteCarloMethodsusingStochasticApproximationArnaudDoucet’,VladislavB.TadiCDepartmentofElectricalandElectronicEngineering,TheUniversityofMelbourne,Parkville,Victoria305

2、2,Australia.Email:{a.doucet,v.tadic}Qee.mu.oz.auAbstractderweakassumptions,itcanbetypicallyshownthatthesealgorithmsconvergeinacertainsensetowardstheSequentialMonteCarlo(SMC)methodsakaParticleposteriorprobabilitydistributionsofinterestasymp-ateringtechniquesareaset

3、ofpowerfulandversatiletoticallyinthenumberofparticles[5],[SI.However,simulation-basedmethodstoperformoptimalstatees-theperformanceofSMCalgorithmsdependsheavilyontimationinnon-linearnon-Gaussianstatespacemodelsthevariousparametersofthealgorithms.Considerfor[SI.Inth

4、isapproach,theposteriorprobabilitydistri-exampletheclassofSequentialImportanceSamplingbutionsofinterestareestimatedusingacloudofran-Resampling(SISR)algorithms[7].Currentalgorithmsdomsampleswhicharecarriedovertimeusingimpor-aretypicallydesignedsoastooptimizesome“lo

5、cal”tancesamplingandresamplingtechniques.Currental-criteriasuchastheconditionalvarianceoftheimpor-gorithmsaretypicallydesignedsoastooptimizesometanceweightsintheimportancesamplingsteporthe“local1’criteriasuchastheconditionalvarianceoftheconditionalvarianceofthenum

6、berofoffspringintheimportanceweightsintheimportancesamplingstep.resamplingstep.However,theeffectoftheselocalopti-However,theeffectoftheselocaloptimizationsisnotmizationsisnotclearontheglobalperformanceoftheclearontheglobalperformanceofthealgorithm;e.g.algorithm.Fo

7、rexample,samplingwithanon-locally.samplingwithanon-locallyoptimalimportancedistri-optimalimportancedistributionatagiventimecouldbutionmightbebeneficialatfurthertimesteps.Webebeneficialatfurthertimesteps.Soevenifoptimiz-presenthereanaltemativeprincipledapproachwher

8、eing“local”criteriaissensible,onewouldpreferinap-theSMCisparametrizedanditsparametersoptimizedplicationstodesignanalgorithmoptimizinga“global”withrespec

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。