Sequential Monte Carlo Methods for General State-Space Models英文文献资料

Sequential Monte Carlo Methods for General State-Space Models英文文献资料

ID:39412896

大小:898.22 KB

页数:70页

时间:2019-07-02

Sequential Monte Carlo Methods for General State-Space Models英文文献资料_第1页
Sequential Monte Carlo Methods for General State-Space Models英文文献资料_第2页
Sequential Monte Carlo Methods for General State-Space Models英文文献资料_第3页
Sequential Monte Carlo Methods for General State-Space Models英文文献资料_第4页
Sequential Monte Carlo Methods for General State-Space Models英文文献资料_第5页
资源描述:

《Sequential Monte Carlo Methods for General State-Space Models英文文献资料》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、IntroductionFilteringSmoothingandPredictionParameterEstimationTheoreticalAspectsSimulationsSequentialMonteCarloMethodsforGeneralState-SpaceModelsJanCNeddermeyerUniversitätHeidelbergHeidelberg,20061/70IntroductionFilteringSmoothingandPredictionParameterEstimationTheoreticalAspectsSim

2、ulationsContents1Introduction2Filtering3SmoothingandPrediction4ParameterEstimation5TheoreticalAspects6Simulations2/70IntroductionFilteringSmoothingandPredictionParameterEstimationTheoreticalAspectsSimulationsOutline1Introduction2Filtering3SmoothingandPrediction4ParameterEstimation5T

3、heoreticalAspects6Simulations3/70IntroductionFilteringSmoothingandPredictionParameterEstimationTheoreticalAspectsSimulationsGeneralState-SpaceModelRandomvariables:1Hiddenstatessequence{Xt;t≥0}2Observationssequence{Yt;t≥1}Xt=ft(Xt−1,Ut−1)(processmodel)Yt=ht(Xt,Vt)(observationmodel)•f

4、t:Rnx×Rnu→Rnx,ht:Rnx×Rnv→Rnyarbitraryfunctions•Ut,Vti.i.d.noisesequences(notnecessarilyGaussian)Aim:EstimatedistributionofthehiddenstatesusingknownobservationsYt=yt.4/70IntroductionFilteringSmoothingandPredictionParameterEstimationTheoreticalAspectsSimulationsDependenciesinaGSSMTheG

5、SSMasadirectedacyclicgraphY1···Yt−1YtYt+1···↑↑↑↑X0→X1→···→Xt−1→Xt→Xt+1→···⇒Given{Xt;t≥0},theobservations{Yt;t≥1}areindependent.Furthermore,p(yt

6、y1:t−1,x0:t)=p(yt

7、xt)p(xt

8、y1:t−1,x0:t−1)=p(xt

9、xt−1)5/70IntroductionFilteringSmoothingandPredictionParameterEstimationTheoreticalAspectsSimu

10、lationsFirstExampleofaGSSMThelinearGaussiancaseXt=FtXt−1+Ut−1Yt=HtXt+Vt•Ft,Htmatrices•Ut,Vti.i.d.Gaussiannoisesequencesoptimalfilterexists⇒TheKalmanfilter6/70IntroductionFilteringSmoothingandPredictionParameterEstimationTheoreticalAspectsSimulationsSecondExampleofaGSSMAStochasticvolat

11、ilitymodel[Stroud2003]•Ytreturnsofsomefinancialunderlying(i.e.stockindex)•XtvolatilityofreturnsXt=α+βXt−1+γUtXtYt=expVt2whereUt,Vt∼N(0,1).Parametervectorθ=(αβγ)oftenunknown.⇒Additionalproblem:Parameterestimation7/70IntroductionFilteringSmoothingandPredictionParameterEstimationTheor

12、eticalAspectsSimula

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。