欢迎来到天天文库
浏览记录
ID:39706415
大小:94.50 KB
页数:3页
时间:2019-07-09
《2011考研证明题系列-题目4》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、这道题看上去就比较容易入手。因为题目有两个问题,一般来说,第一问是为第二问做铺垫的,往往第二问可以用到第一问的结论,就算用不到,第一问也会给第二问带来很明确的方向。还是条件入手,分析条件,从正向边界,平面区域,不难得出此题是二重积分和曲线积分的转换问题,应该使用格林公式来做。于是分别对第一问左右两边用格林公式,转换成二重积分。对比二重积分的被积表达式,发现其实并不完全一样。所以这个时候我们又得考虑一下,是不是哪个条件没有用上。仔细观察下给的条件,发现积分区域没用上,这个区域有个特点,就是很对称,不过
2、不关于x轴也不关于y轴对称,而是关于y=x对称。于是OK了。利用这种对称性,成功的证明两个二重积分是相等的了!下面接着做第二问。第二问是一个不等式问题,如果没有第一问的铺垫,也算是比较难的了,不过有了第一问,那么就相对简单些了。先做一些处理这一步也算是得力于第一问了。就是利用y=x对称的这个性质!这样一来,我们将多变量转换成了单变量,这也是做题的一种策略!可是即使做到这一步,我们也无法直接得出结论,并且e^sinx这种函数是无法积分(准确说无法找出初等原函数),加上题目本身也不是让你准确积出来,而是
3、证明不等式,所以联想到放缩!于是下一步考察e^x+e^(-x)这个函数的性质为了能够积分容易,泰勒公式是一个不错的选择,它将各种函数都弄成了幂函数的形式,而幂函数正是很容易积分的形式。于是,将e^x+e^(-x)在x=0点展开。一放缩,本题就得出答案了,具体过程如下。最后总结一下这道题目题目分析过程不算特别难,主要就是格林公式的应用和二重积分的对称性,以及最后的泰勒公式展开。但是有两个地方值得挖掘(1)题目可以一般化!方法与上面一模一样,这里不赘述。不过需要注意的是,第二问就无法证明大于等于5/2π
4、^2,只能证明大于等于2π^2(2)对于本题的第二问,我们可以从解答中看出,还可以继续不断的进行更强的放缩得到的结果也更加强!这一种方法给我们的启示就是:对于那种无法积出具体分的积分不等式,我们可以利用泰勒展开来做。适当放缩就可以得到答案!下面就这个方法,给一道习题此题左边比较容易,右边稍微有点难,可以尝试一下!
此文档下载收益归作者所有