资源描述:
《微积分学 P.P.t 标准课件12-第12讲函数的连续性》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高等院校非数学类本科数学课程——一元微积分学大学数学(一)第十二讲函数的连续性脚本编写、教案制作:刘楚中彭亚新邓爱珍刘开宇孟益民第三章函数的极限与连续性本章学习要求:了解函数极限的概念,知道运用“ε-δ”和“ε-X”语言描述函数的极限。理解极限与左右极限的关系。熟练掌握极限的四则运算法则以及运用左右极限计算分段函数在分段点处的极限。理解无穷小量的定义。理解函数极限与无穷小量间的关系。掌握无穷小量的比较,能熟练运用等价无穷小量计算相应的函数极限。了解无穷大量的概念及其与无穷小量的关系。理解极限存在准则。能较好运用极限存在准则和两个
2、重要极限求相应的函数极限。理解函数在一点连续以及在区间上连续的概念,会判断函数间断点的类型。了解基本初等函数和初等函数的连续性以及闭区间上连续函数的性质(介值定理、最值定理)。理解幂级数的基本概念。掌握幂级数的收敛判别法。第三章函数的极限与连续性第七、八节函数的连续性及其性质一、连续函数的概念二.函数的间断点连续函数的运算及其基本性质四.初等函数的连续性一、连续函数的概念极限形式增量形式设f(x)在U(x0)内有定义,若则称函数f(x)在点x0处是连续的.1.函数连续性的定义(极限形式)可减弱:x0为聚点函数的连续性是一个局部性
3、的概念,是逐点定义的.定义是整个邻域函数f(x)在点x0处连续,应该满足以下三点:(1)f(x)在U(x0)内有定义;(包括在点x0处有定义)(极限值等于函数在点x0处的函数值)函数y=x2在点x=0处是否连续?函数y=x2在点x=0处连续.又且y=x2在U(0)内有定义,例1解函数的连续性是通过极限定义的,当然可以运用《》语言描述它.2.连续性的《-语言》形式设函数f(x)在U(x0)内有定义.,若,当
4、xx0
5、<时,有则称函数f(x)在点x0处是连续的.
6、f(x)f(x0)
7、<成立,定义
8、3.连续性概念的增量形式在某过程中,变量u的终值u2与它的初值u1的差u2u1,称为变量u在u1处的增量,记为u=u2-u1.定义u是一个整体记号,它可以取正值、负值或零.有时我们也称u为变量u在u1处的差分.设函数f(x)在U(x0)内有定义,xU(x0),则称x=xx0为自变量x在x0点处的增量.=f(x0+x)f(x0)y=f(x)f(x0)xyOx0xxyy=f(x)此时,x=x0+x,相应地,函数在点x0点处有增量y连续性概念的增量形式则称f(x)在点x0处连续.设f(x)在U(x0)内有
9、定义.若定义自变量的增量趋于零时,函数的增量也趋于零.4.函数的左、右连续性设函数f(x)在[x0,x0+)内有定义.若则称f(x)在x0点处右连续.设函数f(x)在(x0–,x0]内有定义.若则称f(x)在x0点处左连续.其中,为任意常数.定义函数在点x0连续,等价于它在点x0既左连续又右连续.定理讨论y=
10、x
11、,x()在点x=0处y=
12、x
13、在点x=0处连续.xyy=
14、x
15、O的连续性.例2解讨论y=sgnx在点x=0处的连续性.sgnx=1,x>0,sgnx
16、x=0=sgn0=0故符号函数y=sgnx在
17、点x=0处不连续.0,x=0,1,x<0.例3解讨论函数f(x)=x2,x1,在x=1处的连续性.函数f(x)在点x=1处不连续.故函数f(x)在点x=1处是左连续的.x+1,x>1,但由于例4解5.函数在区间上的连续性设函数f(x)在开区间(a,b)内有定义.若x0(a,b),f(x)在点x0处连续,则称f(x)在开区间(a,b)内连续,记为f(x)C((a,b)).定义若f(x)C((a,b)),且f(x)在x=a处右连续,在端点x=b处左连续,则称函数f(x)在闭区间[a,b]上连续,记为f(x)C([a,
18、b]).对半开闭区间和无穷区间可类似定义连续性定义一般地,如果函数f(x)在区间I上连续,则记为f(x)C(I).例5介绍李普希茨(Lipschitz)连续性、赫尔德(hölder)连续性.例二.函数的间断点通常将函数的不连续点叫做函数的间断点.函数f(x)在点x0处连续,应该满足以下三点:(1)f(x)在U(x0)内有定义;(包括在点x0处有定义)(极限值等于函数在点x0处的函数值)(1)f(x)在x0处无定义.1.函数间断点的定义满足下述三个条件中的任何一个,则称函数f(x)若函数f(x)在内有定义,且在点x0处在点x0处
19、间断,点x0称为函数f(x)的一个间断点:定义求函数间断点的途径:(1)f(x)在x0处无定义,但f(x)在内有定义.(2)中至少有一个不存在.(3)存在,但不相等.(4)但af(x0).2.函数间断点的分类函数的间断点第一类间断点第二类间断点跳跃可去无穷振荡