导学案选修1-2导学案独立性检验

导学案选修1-2导学案独立性检验

ID:39557058

大小:169.00 KB

页数:3页

时间:2019-07-06

导学案选修1-2导学案独立性检验_第1页
导学案选修1-2导学案独立性检验_第2页
导学案选修1-2导学案独立性检验_第3页
资源描述:

《导学案选修1-2导学案独立性检验》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2011—2012学年高二数学选修1—2第一章统计案例导学案编号:03班级:姓名:教师评价:编写:一中§1.2.1独立性检验的基本思想及其初步应用学习目标通过对实际问题的分析探究,了解独立性检验(只要求2×2列联表)的基本思想、方法及初步应用.;了解独立性检验的常用方法:三维柱形图和二维条形图,及其K²(或R²)的大小关系.学习重难点理解独立性检验的基本思想及实施步骤.学习过程一、课前准备(预习教材P10~P14找出疑惑之处)二、新课导学知识1分类变量:探究一为研究吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果(单位:人):不患肺癌患肺

2、癌总计不吸烟7775427817吸 烟2099492148总 计9874919965那么吸烟是否对患肺癌有影响?知识点2列联表:数据分析:等高条形图分析:判断结果:探究二若先假设H:吸烟与患肺癌没有关系,能够推出什么结论呢?不患肺癌患肺癌总计不吸烟aba+b吸 烟cdc+d总 计a+cb+da+b+c+d知识3随机变量小结:独立性检验的基本思想:①独立性检验的必要性(为什么中能只凭列联表的数据和图形下结论?):列联表中的数据是样本数据,它只是总体的代表,具有随机性,故需要用列联表检验的方法确认所得结论在多大程度上适用于总体.②独立性检验的步骤(略)及原理(与反证

3、法类似):    反证法       假设检验要证明结论A备择假设H在A不成立的前提下进行推理在H不成立的条件下,即H成立的条件下进行推理推出矛盾,意味着结论A成立推出有利于H成立的小概率事件(概率不超过的事件)发生,意味着H成立的可能性(可能性为(1-))很大没有找到矛盾,不能对A下任何结论,即反证法不成功推出有利于H成立的小概率事件不发生,接受原假设③上例的解决步骤第一步:提出假设检验问题  H:吸烟与患肺癌没有关系H:吸烟与患肺癌有关系第二步:选择检验的指标  (它越小,原假设“H:吸烟与患肺癌没有关系”成立的可能性越大;它越大,备择假设“H:吸烟与患肺癌

4、有关系”成立的可能性越大.第三步:查表得出结论P(k2k)0.500.400.250.150.100.050.0250.0100.0050.001k0.4550.7081.3232.0722.7063.845.0246.6357.87910.83例1在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶.分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?32011—2012学年高二数学选修1—2第一章统计案例导学案编号:03班级:姓名:教师评价:编写:

5、一中动手试试1.在一项有关医疗保健的社会调查中,发现被调查的男性有530人,女性有670人,其中男性中喜欢吃甜食的有117人,而女性中喜欢吃甜食的有492人,试判断喜不喜欢吃甜食与性别有无关系.作列联表如下(单位:人):性别与喜欢吃甜食列联表 喜欢吃甜食不喜欢吃甜食总计男117413530女492178670总计6095911200画三维柱形图,如图.2.下面2×2列联表的的值为________.课堂小结:了解独立性检验(只要求2×2列联表)的基本思想、方法及初步应用.;了解独立性检验的常用方法:三维柱形图和二维条形图,及其K²(或R²)的大小关系.三、课后作业

6、1.本节收获:2.学习检测1.如图所示是根据调查人的性格与性别有无关系的相应数据画出的三维柱形图,由该三维柱形图可知,人的性格与性别_有_____关系.(填“有”或“没有”)32011—2012学年高二数学选修1—2第一章统计案例导学案编号:03班级:姓名:教师评价:编写:一中2.某防疫站对屠宰场及肉食零售点的猪肉检查沙门氏菌情况,结果如下表,试检验屠宰场与零售点猪肉带菌率有无差异. 带菌头数不带菌头数合计屠宰场83240零售点141832合计225072[解析] K2==4.726.因为4.726>3.841,所以我们有95%的把握说,屠宰场与零售点猪肉带菌率

7、有差异.3.为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表:喜欢数学课程不喜欢数学课程  总 计   男   37   85   122   女   35   143   178  总 计   72   228   300由表中数据计算得到的观察值.在多大程度上可以认为高中生的性别与是否数学课程之间有关系?为什么?强调:①使得成立的前提是假设“性别与是否喜欢数学课程之间没有关系”.如果这个前提不成立,上面的概率估计式就不一定正确;②结论有95%的把握认为“性别与喜欢数学课程之间有关系”的含义;③在熟练掌

8、握了两个分类变量的独立性

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。