Improving Market Clearing Price Prediction by Using a Committee Machine of Neural Networks

Improving Market Clearing Price Prediction by Using a Committee Machine of Neural Networks

ID:39505363

大小:597.82 KB

页数:10页

时间:2019-07-04

Improving Market Clearing Price Prediction by Using a Committee Machine of Neural Networks_第1页
Improving Market Clearing Price Prediction by Using a Committee Machine of Neural Networks_第2页
Improving Market Clearing Price Prediction by Using a Committee Machine of Neural Networks_第3页
Improving Market Clearing Price Prediction by Using a Committee Machine of Neural Networks_第4页
Improving Market Clearing Price Prediction by Using a Committee Machine of Neural Networks_第5页
资源描述:

《Improving Market Clearing Price Prediction by Using a Committee Machine of Neural Networks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、IEEETRANSACTIONSONPOWERSYSTEMS,VOL.19,NO.4,NOVEMBER20041867ImprovingMarketClearingPricePredictionbyUsingaCommitteeMachineofNeuralNetworksJau-JiaGuo,StudentMember,IEEE,andPeterB.Luh,Fellow,IEEEAbstract—Predictingmarketclearingpricesisanimportantbutdifficulttask,andneuralnetworkshavebeenw

2、idelyused.Asingleneuralnetwork,however,maymisrepresentpartoftheinput-outputdatamappingthatcouldhavebeencorrectlyrepre-sentedbydifferentnetworks.Theuseofa“committeemachine”composedofmultiplenetworkscaninprinciplealleviatesuchadifficulty.Amajorchallengeforusingacommitteemachineistoproperl

3、ycombinepredictionsfrommultiplenetworks,sincetheperformanceofindividualnetworksisinputdependentduetomappingmisrepresentation.ThispaperpresentsanewmethodinwhichweightingcoefficientsforcombiningnetworkpredictionsFig.1.Schematicofanensemble-averagingcommitteemachinewithnetworkaretheprobabi

4、litiesthatindividualnetworkscapturethetruepredictionsy^andweightingcoefficientsa.input-outputrelationshipatthatpredictioninstant.TestingoftheNewEnglandmarketcleaningpricesdemonstratesthatthenewspaceofmixturesofexpertsisdividedintoseveralregionsmethodperformsbetterthanindividualnetworks,

5、andbetterthancommitteemachinesusingcurrentensemble-averagingmethods.(subspaces)towhichdifferentneuralnetworksareassigned.Agatingnetworkdecideswhichnetworkpredictionwillbese-IndexTerms—Committeemachines,energypriceforecasting,lectedbasedoninputdata[6].Incontrast,thesecondapproachmultipl

6、emodelapproach,neuralnetworks.combinespredictionsofmultiplenetworks.Awell-knownmethodistheensemble-averagingmethodasdepictedinFig.1I.INTRODUCTIONwherepredictionsofneuralnetworksarelinearlycombinedEURALNETWORKShavebeenwidelyusedinmanybasedonastraightaverageorthestatisticsofhistoricalpre

7、dic-Nforecastingproblems,includingloadandmarketclearingtionerrors[7][9].price(MCP)predictionsforpowersystems[1][3].ThemainTheneuralnetworksinFig.1maybeofdifferentkinds,orofreasonfortheirsuccessisthattheyarecapableofinferringthesamekindbutwithdifferentconfigurations(e.g.,differenthidde

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。