欢迎来到天天文库
浏览记录
ID:39503954
大小:137.50 KB
页数:4页
时间:2019-07-04
《解析几何中的一些常用结论》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、解析几何中的一些常用结论1.直线的倾斜角α的范围是[0,π)2.直线的倾斜角与斜率的变化关系:当倾斜角是锐角是,斜率k随着倾斜角α的增大而增大。当α是钝角时,k与α同增减。3.两直线:L1A1x+B1y+C1=0L2:A2x+B2y+C2=0L1⊥L2A1A2+B1B2=04.截距不是距离,截距相等时不要忘了过原点的特殊情形。B2=05.两直线的到角公式:L1到L2的角为θ,tanθ= 夹角为θ,tanθ=
2、
3、 注意夹角和到角的区别6.点到直线的距离公式,两平行直线间距离的求法。7.有关对称的一些结论 ①点(a,b)关于x轴、y轴、原点、直线y=x的对称点分
4、别是(a,-b),(-a,b),(-a,-b),(b,a)②如何求点(a,b)关于直线Ax+By+C=0的对称点③直线Ax+By+C=0关于x轴、y轴、原点、直线y=x的对称的直线方程分别是什么,关于点(a,b)对称的直线方程有时什么?④如何处理与光的入射与反射问题?8.曲线f(x,y)=0关于下列点和线对称的曲线方程为:(1)点(a.b) (2)x轴 (3)y轴 (4)原点
5、 (5)直线y=x (6)直线y=-x (7)直线x=a 9.点和圆的位置关系的判别转化为点到圆心的距离与半径的大小关系。点P(x0,y0),圆的方程:(x-a)2+(y-b)2=r2.如果(x0-a)2+(y0-b)2>r2点P(x0,y0)在圆外;如果(x0-a)2+(y0-b)26、0,y0)在圆x2+y2=r2上,那么过点P的切线方程为:x0x+y0y=r2.11.过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与x轴垂直的直线。12.直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题。d>r相离 d=r相切 dr+R两圆相离 d=r+R两圆相外切7、R-r8、9、R-r10、两圆相内切d<11、R-r12、两圆内含 d=13、0,两圆同心。14.两圆相交弦所在直线方程的求法:圆C1的方程为:x2+y2+D1x+E1y+C1=0.圆C2的方程为:x2+y2+D2x+E2y+C2=0.把两式相减得相交弦所在直线方程为:(D1-D2)x+(E1-E2)y+(C1-C2)=015.圆上一定到某点或者某条直线的距离的最大、最小值的求法。16.焦半径公式:在椭圆=1中,F1、F2分别左右焦点,P(x0,y0)是椭圆是一(1)14、PF115、=a+ex016、PF217、=a-ex0(2)三角形PF1F2的面积如何计算17.圆锥曲线中到焦点的距离问题经常转化为到准线的距离。18.直线y=kx+b和圆锥曲线f(18、x,y)=0交于两点P1(x1,y1),P2(x2,y2)则弦长P1P2=19.双曲线的渐近线的求法(注意焦点的位置)已知双曲线的渐近线方程如何设双曲线的方程。20.抛物线中与焦点有关的一些结论:(要记忆)解题思路与方法:高考试题中的解析几何的分布特点是除在客观题中有4个题目外,就是在解答题中有一个压轴题.也就是解析几何没有中档题.且解析几何压轴题所考查的内容是求轨迹问题、直线和圆锥曲线的位置关系、关于圆锥曲线的最值问题等.其中最重要的是直线与圆锥曲线的位置关系.在复习过程中要注意下述几个问题:(1)在解答有关圆锥曲线问题时,首先要考虑圆锥曲线焦点的位置,对于19、抛物线还应同时注意开口方向,这是减少或避免错误的一个关键.(2)在考查直线和圆锥曲线的位置关系或两圆锥曲线的位置关系时,可以利用方程组消元后得到二次方程,用判别式进行判断.但对直线与抛物线的对称轴平行时,直线与双曲线的渐近线平行时,不能使用判别式,为避免繁琐运算并准确判断特殊情况,此时要注意用好分类讨论和数形结合的思想方法.画出方程所表示的曲线,通过图形求解.当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘20、题目的隐含条件,寻找量与量间的关系灵活
6、0,y0)在圆x2+y2=r2上,那么过点P的切线方程为:x0x+y0y=r2.11.过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与x轴垂直的直线。12.直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题。d>r相离 d=r相切 dr+R两圆相离 d=r+R两圆相外切
7、R-r
8、9、R-r10、两圆相内切d<11、R-r12、两圆内含 d=13、0,两圆同心。14.两圆相交弦所在直线方程的求法:圆C1的方程为:x2+y2+D1x+E1y+C1=0.圆C2的方程为:x2+y2+D2x+E2y+C2=0.把两式相减得相交弦所在直线方程为:(D1-D2)x+(E1-E2)y+(C1-C2)=015.圆上一定到某点或者某条直线的距离的最大、最小值的求法。16.焦半径公式:在椭圆=1中,F1、F2分别左右焦点,P(x0,y0)是椭圆是一(1)14、PF115、=a+ex016、PF217、=a-ex0(2)三角形PF1F2的面积如何计算17.圆锥曲线中到焦点的距离问题经常转化为到准线的距离。18.直线y=kx+b和圆锥曲线f(18、x,y)=0交于两点P1(x1,y1),P2(x2,y2)则弦长P1P2=19.双曲线的渐近线的求法(注意焦点的位置)已知双曲线的渐近线方程如何设双曲线的方程。20.抛物线中与焦点有关的一些结论:(要记忆)解题思路与方法:高考试题中的解析几何的分布特点是除在客观题中有4个题目外,就是在解答题中有一个压轴题.也就是解析几何没有中档题.且解析几何压轴题所考查的内容是求轨迹问题、直线和圆锥曲线的位置关系、关于圆锥曲线的最值问题等.其中最重要的是直线与圆锥曲线的位置关系.在复习过程中要注意下述几个问题:(1)在解答有关圆锥曲线问题时,首先要考虑圆锥曲线焦点的位置,对于19、抛物线还应同时注意开口方向,这是减少或避免错误的一个关键.(2)在考查直线和圆锥曲线的位置关系或两圆锥曲线的位置关系时,可以利用方程组消元后得到二次方程,用判别式进行判断.但对直线与抛物线的对称轴平行时,直线与双曲线的渐近线平行时,不能使用判别式,为避免繁琐运算并准确判断特殊情况,此时要注意用好分类讨论和数形结合的思想方法.画出方程所表示的曲线,通过图形求解.当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘20、题目的隐含条件,寻找量与量间的关系灵活
9、R-r
10、两圆相内切d<
11、R-r
12、两圆内含 d=
13、0,两圆同心。14.两圆相交弦所在直线方程的求法:圆C1的方程为:x2+y2+D1x+E1y+C1=0.圆C2的方程为:x2+y2+D2x+E2y+C2=0.把两式相减得相交弦所在直线方程为:(D1-D2)x+(E1-E2)y+(C1-C2)=015.圆上一定到某点或者某条直线的距离的最大、最小值的求法。16.焦半径公式:在椭圆=1中,F1、F2分别左右焦点,P(x0,y0)是椭圆是一(1)
14、PF1
15、=a+ex0
16、PF2
17、=a-ex0(2)三角形PF1F2的面积如何计算17.圆锥曲线中到焦点的距离问题经常转化为到准线的距离。18.直线y=kx+b和圆锥曲线f(
18、x,y)=0交于两点P1(x1,y1),P2(x2,y2)则弦长P1P2=19.双曲线的渐近线的求法(注意焦点的位置)已知双曲线的渐近线方程如何设双曲线的方程。20.抛物线中与焦点有关的一些结论:(要记忆)解题思路与方法:高考试题中的解析几何的分布特点是除在客观题中有4个题目外,就是在解答题中有一个压轴题.也就是解析几何没有中档题.且解析几何压轴题所考查的内容是求轨迹问题、直线和圆锥曲线的位置关系、关于圆锥曲线的最值问题等.其中最重要的是直线与圆锥曲线的位置关系.在复习过程中要注意下述几个问题:(1)在解答有关圆锥曲线问题时,首先要考虑圆锥曲线焦点的位置,对于
19、抛物线还应同时注意开口方向,这是减少或避免错误的一个关键.(2)在考查直线和圆锥曲线的位置关系或两圆锥曲线的位置关系时,可以利用方程组消元后得到二次方程,用判别式进行判断.但对直线与抛物线的对称轴平行时,直线与双曲线的渐近线平行时,不能使用判别式,为避免繁琐运算并准确判断特殊情况,此时要注意用好分类讨论和数形结合的思想方法.画出方程所表示的曲线,通过图形求解.当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘
20、题目的隐含条件,寻找量与量间的关系灵活
此文档下载收益归作者所有