导数常用的一些技巧和结论

导数常用的一些技巧和结论

ID:22576583

大小:787.32 KB

页数:10页

时间:2018-10-30

导数常用的一些技巧和结论_第1页
导数常用的一些技巧和结论_第2页
导数常用的一些技巧和结论_第3页
导数常用的一些技巧和结论_第4页
导数常用的一些技巧和结论_第5页
资源描述:

《导数常用的一些技巧和结论》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、导数常用的一些技巧和结论(2017年全国新课标1·理·21)已知.(1)讨论的单调性;(2)若有两个零点,求的取值范围.解析:(1)若,则恒成立,所以在R上递减;若,令,得.当时,,所以在上递减;当时,,所以在上递增.综上,当时,在R上递减;当时,在上递减,在上递增.(2)有两个零点,必须满足,即,且.构造函数,.易得,所以单调递减.又因为,所以.下面只要证明当时,有两个零点即可,为此我们先证明当时,.事实上,构造函数,易得,∴,所以,即.当时,,,其中,,所以在和上各有一个零点.故的取值范围是.注意:取点过程用到了常用放缩技巧。一方面:;另一

2、方面:时,(目测的)常用的放缩公式(考试时需给出证明过程)第一组:对数放缩(放缩成一次函数),,(放缩成双撇函数),,,,(放缩成二次函数),,(放缩成类反比例函数),,,,,第二组:指数放缩(放缩成一次函数),,,(放缩成类反比例函数),,(放缩成二次函数),,第三组:指对放缩第四组:三角函数放缩,,.第五组:以直线为切线的函数,,,,.几个经典函数模型经典模型一:或.【例1】讨论函数的零点个数.(1)时,无零点.,.(2)时,1个零点.,.(3)当时,2个零点.(目测),,其中.(放缩).,其中.(用到了)(4)当时,1个零点.,单调递增.

3、,.【变式】(经过换元和等价变形之后均可以转化到例1:):1.讨论的零点个数(令,);2.讨论的零点个数(令);3.讨论的零点个数(考虑);4.讨论的零点个数(考虑,令,);5.讨论的零点个数(令,);6.讨论的零点个数(令).经典模型二:或【例2】讨论函数的零点个数.(1)时,1个零点.,单调递增.且,,所以在上有一个零点;(2)时,无零点.恒成立;(3)时,无零点.;(4)时,2个零点.,,.【变式】(经过换元和等价变形之后均可以转化到例题2:):1.讨论的零点个数(令,);2.讨论的零点个数(去分母后与1等价);3.讨论的零点个数(移项平

4、方后与1等价);4.讨论的零点个数(移项开方后换元与1等价);5.讨论的零点个数(乘以系数e,令);6.讨论的零点个数(令,转化成2)7.讨论的零点个数(令,);经典模型三:或【例】讨论函数的零点个数.(1)时,1个零点.,单调递增.,.(2)时,1个零点().(3)时,无零点.,(4)时,1个零点..(5)时,2个零点.,,,【变式】(经过换元和等价变形之后均可以转化到例题3:):1.讨论的零点个数;2.讨论的零点个数(考虑,令);3.讨论的零点个数(令);4.讨论的零点个数;练习题1.已知函数有两个零点,求的取值范围.2.设函数,讨论的导函

5、数的零点的个数.3.已知函数有两个零点,求的取值范围.4.已知函数.当时,试讨论的零点的个数.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。