2N-Storage Low Dissipation and Dispersion Runge-Kutta Schemes for Computational Acoustics

2N-Storage Low Dissipation and Dispersion Runge-Kutta Schemes for Computational Acoustics

ID:39498219

大小:124.58 KB

页数:8页

时间:2019-07-04

2N-Storage Low Dissipation and Dispersion Runge-Kutta Schemes for Computational Acoustics_第1页
2N-Storage Low Dissipation and Dispersion Runge-Kutta Schemes for Computational Acoustics_第2页
2N-Storage Low Dissipation and Dispersion Runge-Kutta Schemes for Computational Acoustics_第3页
2N-Storage Low Dissipation and Dispersion Runge-Kutta Schemes for Computational Acoustics_第4页
2N-Storage Low Dissipation and Dispersion Runge-Kutta Schemes for Computational Acoustics_第5页
资源描述:

《2N-Storage Low Dissipation and Dispersion Runge-Kutta Schemes for Computational Acoustics》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、JOURNALOFCOMPUTATIONALPHYSICS143,674–681(1998)ARTICLENO.CP985986NOTE2N-StorageLowDissipationandDispersionRunge-KuttaSchemesforComputationalAcoustics1.INTRODUCTIONForphysicalproblemsthatinvolveaccuratetime-dependentwavepropagation,asthosearisinginacoustics,theusualrequirementofahigh-ordertrun

2、cationerrordoesnotguaranteethatanumericalmethodyieldsaccurateresults.Indeed,ashasbeenpointedoutmainlyin[1],thedissipationanddispersionpropertiesofthenumericalmethodareveryimportantforcomputingwavesolutionsofsystemsofpartialdifferentialequations.Thisisvalidforboththespatialandthetimediscretiz

3、ationmethods.TheexplicitRunge-Kutta(RK)methodsarewidelyusedtodiscretizethetimederivativebecauseoftheiradvantagesthatincludeflexibility,largestabilitylimits,andeaseofprogramming.Huandco-workers[2]showedthatthedissipationanddispersionpropertiesoftheRKmethodsdependontheircoefficientsandoptimizedt

4、hemfortheconvectivewaveequation,obtainingwhattheycalledlow-dissipationanddispersionRunge-Kutta(LDDRK)methods.Thesemethodsaremoreefficientthanclassicalones,intermsofworkrequiredforagivenaccuracy,forwavepropagationproblems.Forlargesizephysicalproblems,memoryrequirementsmaybecomeexhaustive.Theyc

5、anbedecreasedusingspecialRKschemesthatcanbewrittensuchthatonly2N-storageisrequired,whereNisthenumberofdegreesoffreedomofthesystem(i.e.,numberofgridpoints£numberofvariables).TodesignsuchRKschemes,enoughfreecoefficientsmustexistsuchthatadditionalconditionsholdbetweenthem.Williamson[3]firstshowed

6、thatallsecond-orderandsomethird-ordermethodscanbewrittenin2N-storageform.Healsoshowedthatfourth-orderfour-stagemethodscannotbewritteninthisway.Byallowingadditionalstagesandusingtheresultingnewfreecoefficientstoimposethe2N-storageconstraints,CarpenterandKennedy[4]devisedafourth-order,five-stage

7、sRKmethodthatiscompatiblewiththeclassicalfourth-ordermethodwhichhoweverrequiresatleast3Nstorage.Huetal.[2]provide3N-storageimplementationsoftheLDDRKschemes.Thesearevalidforlinearproblemsonly,inthesensethattheyturntosecondorderaccuracywhenappliedton

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。