资源描述:
《Low-wavenumber forcing and turbulent energy dissipation》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、Low-wavenumberforcingandturbulentenergydissipationCharlesR.DoeringandNikolaP.PetrovDepartmentofMathematicsandMichiganCenterforTheoreticalPhysicsUniversityofMichigan,AnnArbor,MI48109,USAE-mailaddresses:doering@umich.eduandnpetrov@umich.edu1IntroductionInmanyDirectNumeri
2、calSimulations(DNS)ofturbulenceresearchersinjectpowerintothefluidatlargescalesandthenobservehowit“propagates”tothesmallscales[1,2,3,4,5,6,7,8,9,10,11,12].Onesuchtypeofstirringistotaketheforcef(x,t)tobeproportionaltotheprojectionofthevelocityu(x,t)oftheflowontoitslowestFo
3、uriermodes,whilekeepingtherateofinjectedexternalpowerconstant.Inthispaperweperformasimplebutrigorousanalysistoestablishboundsontherelationshipbetweentheenergydissipationrate(whichisthesameastheinjectedpower)andtheresultingReynoldsnumber.Whilethisanalysiscannotgivedetai
4、ledinformationoftheenergyspectrum,itdoesprovidesomeindicationofthebalanceofenergybetweenthelower,directlyforced,modes,andthoseexcitedbythecascade.Thisworkisanextensionoftheanalysisin[13,14,15],wheretheforceisfixed(notafunctionalofthevelocity).Considerfluidinaperiodicd-di
5、mensionalboxofsidelengthℓ.Theallowedwavevectorskareoftheformk=2πa,wherea∈Zdisad-dimensionalℓvectorwithintegercomponents.LetLbethesubsetofwavevectorsthathavethesmallestpossiblewavenumber(namely,2π);Lconsistsof2delements:ℓL={±2πe,...,±2πe}.TheoperatorPprojectsthevectorfie
6、ldℓ1ℓdXu(x,t)=uˆ(k,t)eik·xkontothesubspacespannedbytheFouriercomponentswithwavevectorsinL:XPu(x,t)=uˆ(k,t)eik·x.(1)k∈LarXiv:physics/0404049v1[physics.flu-dyn]9Apr2004Obviously,PmapsL2intoL2vectorfields;infact,PuisC∞inthespatialvariables.Theprojectionalsopreservestheinco
7、mpressibilityproperty.Thatis,if∇·u(x,t)=0,then∇·Pu(x,t)=0.2CharlesR.DoeringandNikolaP.PetrovTheNavier-Stokesequationis1u˙+(u·∇)u+∇p=ν∆u+f,(2)ρwithf(x,t)takenintheformPu(x,t)f(x,t)=ǫ.(3)1kPu(·,t)k2ℓd2R1wherek·kstandsfortheL2-norm,kPu(·,t)k:=
8、Pu(x,t)
9、2ddx2.22Thischoice
10、offorcingensuresthattheinputpowerisconstant:Zu(x,t)·f(x,t)ddx=ℓdǫ.(4)Inthisapproachǫ,νandℓarethe(only)controlparamete