资源描述:
《Introduction to Solid State Physics (Wiley; 8th Edition, 2005)(ISBN 047141526X), Charles Kittel - Solution Manual》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、CHAPTER11.Thevectorsxˆˆ++yzˆand−−xˆyˆ+zˆareinthedirectionsoftwobodydiagonalsofacube.Ifθistheanglebetweenthem,theirscalarproductgivescosθ=–1/3,whence−1θ=cos1/3=90°+19°28'=109°28'.2.Theplane(100)isnormaltothexaxis.Itinterceptsthea'axisat2a'andthec'axisat2c';thereforetheindicesreferredt
2、otheprimitiveaxesare(101).Similarly,theplane(001)willhaveindices(011)whenreferredtoprimitiveaxes.3.Thecentraldotofthefourisatdistancecos60°aaa=°ctn60=cos30°3fromeachoftheotherthreedots,asprojectedontothebasalplane.Ifthe(unprojected)dotsareatthecenterofspheresincontact,then222⎛⎞ac⎛⎞a,
3、=⎜⎟+⎜⎟⎝⎠3⎝⎠2or2122c8a==c;1.633.34a31-1CHAPTER21.ThecrystalplanewithMillerindiceshk^isaplanedefinedbythepointsa1/h,a2/k,anda3/^.(a)Twovectorsthatlieintheplanemaybetakenasa1/h–a2/kanda1/h−a3/^.ButeachofthesevectorsgiveszeroasitsscalarproductwithGa=hk+a+^a,sothatGmustbeperpendiculartoth
4、eplane123hk^.(b)Ifnˆistheunitnormaltotheplane,theinterplanarspacingisnaˆ⋅/h.ButnGˆ=/
5、G
6、,1whenced(hk^)G=⋅aG/h
7、
8、=2π/
9、G
10、.(c)ForasimplecubiclatticeG=(2π+/a)(hxˆˆky+^zˆ),1whence22221Gh++k^==.222d4πa113aa022112.(a)Cellvolumeaa⋅×a=−3aa01232200c12=3ac.2xˆˆyzˆaa×π41123(b)b=π2=−3aa012
11、
12、aa⋅×a3a
13、c2212300c21π=+(xyˆˆ),andsimilarlyforb,b.23a3(c)Sixvectorsinthereciprocallatticeareshownassolidlines.Thebrokenlinesaretheperpendicularbisectorsatthemidpoints.TheinscribedhexagonformsthefirstBrillouinZone.3.Bydefinitionoftheprimitivereciprocallatticevectors33(a23×a)⋅(a3×××a1)(a1a2)V(=π
14、2)=π(2)/
15、(a⋅a×a)
16、BZ3123
17、(a12⋅×aa3)
18、3=π(2)/V.CForthevectoridentity,seeG.A.KornandT.M.Korn,Mathematicalhandbookforscientistsandengineers,McGraw-Hill,1961,p.147.4.(a)Thisfollowsbyforming2-121−−exp[iM(a⋅∆k)]1−exp[iM(a⋅∆k)]
19、F
20、=⋅1−−exp[i(a⋅∆k)]1−exp[i(a⋅∆k)]211−⋅cosM(a∆k)sinM(a⋅∆k)2==.211−
21、⋅cos(a∆k)sin(a⋅∆k)21(b)ThefirstzeroinsinMεoccursforε=2π/M.Thatthisisthecorrectconsiderationfollowsfrom2111sinM(π+hε)=sinπMhcosMε+c%os(&πMh('sinMε.22%(&('2zero,±1asMhisaninteger−π2i(xj1v+yjv2+zjv3)5.S(vvv)=Σfe123j111Referredtoanfcclattice,thebasisofdiamondis000;.Thusintheproduct444S(v
22、vv)=S(fcclat