数学人教版八年级下册矩形的判定(2)

数学人教版八年级下册矩形的判定(2)

ID:39379985

大小:46.78 KB

页数:4页

时间:2019-07-02

数学人教版八年级下册矩形的判定(2)_第1页
数学人教版八年级下册矩形的判定(2)_第2页
数学人教版八年级下册矩形的判定(2)_第3页
数学人教版八年级下册矩形的判定(2)_第4页
资源描述:

《数学人教版八年级下册矩形的判定(2)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、矩形的判定教学目标:1.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力;2.通过矩形判定的教学渗透矛盾可以互相转化的唯物辩证法思想。教法设计:观察、启发、总结、提高,类比探讨,讨论分析,启发式.教学重点:矩形的判定.教学难点:矩形的判定及性质的综合应用.教具学具准备:教具(一个活动的平行四边形)教学步骤:一.复习提问:1.什么叫做平行四边形?什么叫做矩形?2.矩形有哪些性质?3.矩形与平行四边形有什么共同之处?有什么不同之处?二.引入新课1.设问:矩形的判定矩形是有一个角

2、是直角的平行四边形,在判定一个四边形是不是矩形,首先看这个四边形是不是平行四边形,再看它两边的夹角是不是直角,这种用“定义”判定是最重要和最基本的判定方法(这体现了定义作用的双重性、性质和判定).除此之外,还有其它几种判定矩形的方法,下面就来研究这些方法.方法1:有三个角是直角的四边形是矩形.(并让学生写出推理过程。)方法2:对角钱相等的平行四边形是矩形.(分析判定方法2和学生一道写出证明过程。)归纳矩形判定方法(由学生小结):(1)一个角是直角的平行四边形.(2)对角线相等的平行四边形.(3)有三个角是直角

3、的四边形.2.矩形判定方法的实际应用除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形的实用价值.3.矩形知识的综合应用。(让学生思考,然后师生共同完成)例:已知的对角线,相交于,△是等腰直角三角形,,求这个平行四边形的面积(如图).分析解题思路:(1)先判定为矩形.(2)求出△的直角边的长.(3)计算.三.小结:(1)矩形的判定方法l、2都是有两个条件:①是平行四边形,②有一个角是直角或对角线相等.判定方法3的两个条件是:①是四边形,②有三个直角.矩形的判定方法有哪些?一个角是直角的平行四边

4、形对角线相等的平行四边形-—是矩形。有三个角是直角的四边形(2)要注意不要不加考虑地把性质定理的逆命题作为矩形的判定定理.四.补充例题例1:已知:O是矩形ABCD对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,AE=BF=CG=DH,求证:四边形EFGH为矩形分析:利用对角线互相平分且相等的四边形是矩形可以证明证明:∵ABCD为矩形∴AC=BD∴AC、BD互相平分于O∴AO=BO=CO=DO∵AE=BF=CG=DH∴EO=FO=GO=HO又HF=EG∴EFGH为矩形例2:判断(1)两条对角线相

5、等四边形是矩形()(2)两条对角线相等且互相平分的四边形是矩形()(3)有一个角是直角的四边形是矩形()(4)在矩形内部没有和四个顶点距离相等的点()分析及解答:(1)如图(1)四边形ABCD中,AC=BD,但ABCD不为矩形,∴×(2)对角线互相平分的四边形即平行四边形,∴对角线相等的平行四边形为矩形∴√(3)如图(2),四边形ABCD中,∠B=90°,但ABCD不为矩形∴×(4)矩形对角线的交点O到四个顶点距离相等∴×,如图(3),五.作业布置

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。